Skip to main content

Secure Statistical Analysis Using RLWE-Based Homomorphic Encryption

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9144))

Included in the following conference series:

Abstract

Homomorphic encryption enables various calculations while preserving the data confidentiality. Here we apply the homomorphic encryption scheme proposed by Brakerski and Vaikuntanathan (CRYPTO 2011) to secure statistical analysis between two variables. For reduction of ciphertext size and practical performance, we propose a method to pack multiple integers into a few ciphertexts so that it enables efficient computation over the packed ciphertexts. Our packing method is based on Yasuda et al.’s one (DPM 2013). While their method gives efficient secure computation only for small integers, our modification is effective for larger integers. Our implementation shows that our method is faster than the state-of-the-art work. Specifically, for one million integers of 16 bits (resp. 128 bits), it takes about 20 minutes (resp. 3.6 hours) for secure covariance and correlation on an Intel Core i7-3770 3.40 GHz CPU.

A part of this research was done when the first author belonged to Fujitsu Laboratories Ltd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggrawal, C.C., Philip, S.Y.: A general survey of privacy-preserving data mining models and algorithms. Springer (2008)

    Google Scholar 

  2. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomorphic Encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Innovations in Theoretical Computer Science-ITCS 2012, pp. 309–325. ACM (2012)

    Google Scholar 

  4. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Symposium on Theory of Computing-STOC 2013, PP. 575–584. ACM (2013)

    Google Scholar 

  5. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: Foundations of Computer Science-FOCS 2011, 97–106. IEEE (2011)

    Google Scholar 

  7. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Cloud Security Alliance (CSA), Security guidance for critical areas of focus in cloud computing, December 2009. https://cloudsecurityalliance.org/csaguide.pdf

  9. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Ducas, L., Micciancio, D.: FHEW: Bootstrapping homomorphic encryption in less than a second. Cryptology ePrint Archive: report 2014/816 (2014)

    Google Scholar 

  11. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on Theory of Computing-STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  12. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Wuhan, D., Haven, J.: Using homomorphic encryption for large scale statistical analysis (2012). http://cs.stanford.edu/people/dwu4//FHE-SI_Report.pdf

  15. Lauter, K., López-Alt, A., Naehrig, M.: Private computation on encrypted genomic data. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 3–27. Springer, Heidelberg (2015)

    Google Scholar 

  16. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical?. In: ACM workshop on Cloud computing security workshop-CCSW 2011, pp. 113–124. ACM (2011)

    Google Scholar 

  17. Lindner, R., Peikert, C.: Better key sizes (and Attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Designs, Codes and Cryptography 71(1), 57–81 (2014)

    Article  MATH  Google Scholar 

  22. The PARI Group, Bordeaux, PARI/GP. http://pari.math.u-bordeaux.fr/doc.html

  23. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Practical packing method in somewhat homomorphic encryption. In: Garcia-Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.) DPM 2013 and SETOP 2013. LNCS, vol. 8247, pp. 34–50. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Yasuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T. (2015). Secure Statistical Analysis Using RLWE-Based Homomorphic Encryption. In: Foo, E., Stebila, D. (eds) Information Security and Privacy. ACISP 2015. Lecture Notes in Computer Science(), vol 9144. Springer, Cham. https://doi.org/10.1007/978-3-319-19962-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19962-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19961-0

  • Online ISBN: 978-3-319-19962-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics