Skip to main content

Dynamic Threshold Public-Key Encryption with Decryption Consistency from Static Assumptions

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9144))

Abstract

Dynamic threshold public-key encryption (dynamic TPKE) is a natural extension of ordinary TPKE which allows decryption servers to join the system dynamically after the system is set up, and allows the sender to dynamically choose the authorized set and the decryption threshold at the time of encryption. Currently, the only known dynamic TPKE scheme is a scheme proposed by Delerablée and Pointcheval (CRYPTO 2008). This scheme is proven to provide message confidentiality under a \(q\)-type assumption, but to achieve decryption consistency, a random oracle extension is required.

In this paper we show conceptually simple methods for constructing dynamic TPKE schemes with decryption consistency from only static assumptions (e.g., the decisional linear assumption in bilinear groups) without relying on random oracles. Our first construction is a purely generic construction from public-key encryption with non-interactive opening (PKENO) formalized by Damgård et al. (CT-RSA 2008). However, this construction achieves a slightly weaker notion of decryption consistency compared to the random oracle extension of the Delerablée and Pointcheval scheme, which satisfies the notion defined by Boneh, Boyen and Halevi (CT-RSA 2005). Our second construction uses a specific PKENO scheme based on the decisional linear assumption in combination with the efficient zero-knowledge proofs by Groth and Sahai. In contrast to our first construction, our second construction achieves the stronger notion of decryption consistency defined by Boneh, Boyen and Halevi.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 590–609. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM (1988)

    Google Scholar 

  3. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure against adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)

    Google Scholar 

  5. Damgård, I., Hofheinz, D., Kiltz, E., Thorbek, R.: Public-key encryption with non-interactive opening. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 239–255. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Daza, V., Herranz, J., Morillo, P., Ràfols, C.: CCA2-secure threshold broadcast encryption with shorter ciphertexts. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 35–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely. In: Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Computing, pp. 522–533. ACM (1994)

    Google Scholar 

  8. Delerablée, C., Pointcheval, D.: Dynamic threshold public-key encryption. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 317–334. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Desmedt, Y.: Threshold cryptosystems. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 1–14. Springer, Heidelberg (1993)

    Google Scholar 

  10. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Emura, K., Hanaoka, G., Sakai, Y., Schuldt, J.C.N.: Group signature implies public-key encryption with non-interactive opening. International Journal of Information Security 13(1), 51–62 (2014)

    Article  Google Scholar 

  12. Galindo, David: Breaking and repairing damgård et al. public key encryption scheme with non-interactive opening. In: Fischlin, Marc (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 389–398. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Galindo, D., Libert, B., Fischlin, M., Fuchsbauer, G., Lehmann, A., Manulis, M., Schröder, D.: Public-key encryption with non-interactive opening: new constructions and stronger definitions. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 333–350. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Gan, Y., Wang, L., Wang, L., Pan, P., Yang, Y.: Efficient threshold public key encryption with full security based on dual pairing vector spaces. International Journal of Communication Systems 27(12), 4059–4077 (2014)

    Article  Google Scholar 

  15. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Ito, M., Saito, A., Nishizeki, T.: Multiple assignment scheme for sharing secret. Journal of Cryptology 6(1), 15–20 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Libert, B., Yung, M.: Adaptively secure non-interactive threshold cryptosystems. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 588–600. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Lim, C.H., Lee, P.J.: Another method for attaining security against adaptively chosen ciphertext attacks. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 420–434. Springer, Heidelberg (1994)

    Google Scholar 

  21. MacKenzie, P., Reiter, M.K., Yang, K.: Alternatives to non-malleability: definitions, constructions, and applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 171–190. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Qin, B., Wu, Q., Zhang, L., Domingo-Ferrer, J.: Threshold public-key encryption with adaptive security and short ciphertexts. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 62–76. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. Journal of Cryptology 15(2), 75–96 (2002)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Sakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sakai, Y., Emura, K., Schuldt, J.C., Hanaoka, G., Ohta, K. (2015). Dynamic Threshold Public-Key Encryption with Decryption Consistency from Static Assumptions. In: Foo, E., Stebila, D. (eds) Information Security and Privacy. ACISP 2015. Lecture Notes in Computer Science(), vol 9144. Springer, Cham. https://doi.org/10.1007/978-3-319-19962-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19962-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19961-0

  • Online ISBN: 978-3-319-19962-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics