Skip to main content

A Robust Probabilistic Model for Motion Layer Separation in X-ray Fluoroscopy

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Abstract

Fluoroscopic images are characterized by a transparent projection of 3-D structures from all depths to 2-D. Differently moving structures, for example due to breathing and heartbeat, can be described approximately using independently moving 2-D layers. Separating the fluoroscopic images into the motion layers is desirable to facilitate interpretation and diagnosis. Given the motion of each layer, it is state of the art to compute the layer separation by minimizing a least-squares objective function. However, due to high noise levels and inaccurate motion estimates, the results are not satisfactory in X-ray images.

In this work, we propose a probabilistic model for motion layer separation. In this model, we analyze various data terms and regularization terms theoretically and experimentally. We show that a robust penalty function is required in the data term to deal with noise and shortcomings of the image formation model. For the regularization term, we propose to enforce smoothness of the layers using bilateral total variation. On synthetic data, the mean squared error between the estimated layers and the ground truth is improved by \(18\,\%\) compared to the state of the art. In addition, we show qualitative improvements on real X-ray data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)

    Article  Google Scholar 

  2. Cao, Y., Wang, P.: An adaptive method of tracking anatomical curves in X-ray sequences. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 173–180. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Close, R.A., Abbey, C.K., Morioka, C.A., Whiting, J.S.: Accuracy assessment of layer decomposition using simulated angiographic image sequences. IEEE Trans. Med. Imaging 20(10), 990–998 (2001)

    Article  Google Scholar 

  4. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13(10), 1327–1344 (2004)

    Article  Google Scholar 

  5. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Heibel, H., Glocker, B., Groher, M., Pfister, M., Navab, N.: Interventional tool tracking using discrete optimization. IEEE Trans. Med. Imaging 32(3), 544–555 (2013)

    Article  Google Scholar 

  7. Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. Int. J. Comput. Vision 50(3), 329–343 (2002)

    Article  MATH  Google Scholar 

  8. Maier, A., Hofmann, H., Berger, M., Fischer, P., Schwemmer, C., Wu, H., Müller, K., Hornegger, J., Choi, J.H., Riess, C., Keil, A., Fahrig, R.: CONRAD-a software framework for cone- beam imaging in radiology. Med. Phys. 40(11) (2013)

    Google Scholar 

  9. Manhart, M., Kowarschik, M., Fieselmann, A., Deuerling-Zheng, Y., Royalty, K., Maier, A., Hornegger, J.: Dynamic iterative reconstruction for interventional 4-D c-arm CT perfusion imaging. IEEE Trans. Med. Imaging 32(7), 1336–1348 (2013)

    Article  Google Scholar 

  10. Preston, J.S., Rottman, C., Cheryauka, A., Anderton, L., Whitaker, R.T., Joshi, S.: Multi-layer deformation estimation for fluoroscopic imaging. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 123–134. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(14), 259–268 (1992)

    Article  MATH  Google Scholar 

  12. Segars, W., Mahesh, M., Beck, T., Frey, E., Tsui, B.: Realistic CT simulation using the 4D XCAT phantom. Med. Phys. 35(8), 3800–3808 (2008)

    Article  Google Scholar 

  13. Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vision 106(2), 115–137 (2014)

    Article  Google Scholar 

  14. Szeliski, R., Avidan, S., Anandan, P.: Layer extraction from multiple images containing reflections and transparency. In: CVPR, vol. 1, pp. 246–253. IEEE (2000)

    Google Scholar 

  15. Tipping, M.E., Bishop, C.M.: Bayesian image super-resolution. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 1303–1310. MIT Press, Cambridge (2003)

    Google Scholar 

  16. Weiss, Y.: Deriving intrinsic images from image sequences. In: ICCV, vol. 2, pp. 68–75. IEEE (2001)

    Google Scholar 

  17. Zhang, W., Ling, H., Prummer, S., Zhou, K.S., Ostermeier, M., Comaniciu, D.: Coronary tree extraction using motion layer separation. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 116–123. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding by Siemens Healthcare and of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative. The concepts and information presented in this paper are based on research and are not commercially available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fischer, P., Pohl, T., Köhler, T., Maier, A., Hornegger, J. (2015). A Robust Probabilistic Model for Motion Layer Separation in X-ray Fluoroscopy. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics