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Abstract

This paper proposes an inference method well-suited to large sets of medical images. The method 

is based upon a framework where distinctive 3D scale-invariant features are indexed efficiently to 

identify approximate nearest-neighbor (NN) feature matches in O(log N) computational 

complexity in the number of images N. It thus scales well to large data sets, in contrast to methods 

based on pair-wise image registration or feature matching requiring O(N) complexity. Our 

theoretical contribution is a density estimator based on a generative model that generalizes kernel 

density estimation and K-nearest neighbor (KNN) methods. The estimator can be used for on-the-

fly queries, without requiring explicit parametric models or an off-line training phase. The method 

is validated on a large multi-site data set of 95,000,000 features extracted from 19,000 lung CT 

scans. Subject-level classification identifies all images of the same subjects across the entire data 

set despite deformation due to breathing state, including unintentional duplicate scans. State-of-

the-art performance is achieved in predicting chronic pulmonary obstructive disorder (COPD) 

severity across the 5-category GOLD clinical rating, with an accuracy of 89% if both exact and 

one-off predictions are considered correct.

1 Introduction

Systems for storing and transmitting digital data are increasing rapidly in size and bandwidth 

capacity. Data collection projects such as COPDGene (19,000 lung CT scans of 10,000 

subjects) [1] offer unprecedented opportunities to learn from large medical image sets, for 

example to discover subtle aspects of anatomy or pathology only observable in subsets of 

the population. For this, image processing algorithms must scale with the quantities of 

available data.

Consider an algorithm designed to discover and characterize unknown clinical phenotypes 

or disease subclasses from a large set of N images. Two major challenges that must be 

addressed are computational complexity and robust statistical inference. The fundamental 

operation required is often image-to-image similarity evaluation, which incurs a prohibitive 

computational complexity cost of O(N) when performed via traditional pair-wise methods 
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such as registration [2, 3] or feature matching [4, 5]. For example, computing the pairwise 

affinity matrix between 416 low resolution brain scans via efficient deformable registration 

requires about one week on a 50GHz cluster computer [2]. Furthermore, robustly estimating 

variables of interest requires coping with myriad confounds, including arbitrarily misaligned 

data, missing data due to resection or variable scan cropping (e.g. in order to reduce ionizing 

radiation exposure), inter-subject anatomical variability including abnormality, intra-subject 

variability due to growth and deformation (e.g. lung breathing state), inter-scanner 

variability in multi-site data, to name a few.

The technical contribution of this paper is a computational framework that provides a 

solution to both of these challenges. The framework is closely linked to large-scale data 

search methods where data are stored and indexed via nearest neighbor (NN) queries [6, 10]. 

Images are represented as collections of distinctive 3D scale-invariant features [7, 8], 

information-rich observations of salient image content. Robust, local image-to-image 

similarity is computed efficiently in O(log N) computational complexity via approximate 

nearest neighbor search.

The theoretical contribution is a novel estimator for class-conditional densities in a Naive 

Bayes classification formulation, representing a hybrid of kernel density [11] and KNN [12] 

methods. A mixture density is estimated for each input feature of a new image as the 

weighted sum of 1) a variable bandwidth kernel density computed from a set of nearest 

neighbors and 2) a background distribution over unrelated features. This estimator achieves 

state-of-the-art performance in automatically predicting the 5-class GOLD severity label 

from a large multi-site data set, improving upon previous results based on lung-specific 

image processing pipelines and single-site data [13, 28, 29]. Furthermore, subject-level 

classification is used to identify all instances duplicate subjects in a large set of 19,000 

subjects, despite deformation due to breathing state.

2 Related Work

Our work derives from two main bodies of research, local invariant image feature methods 

and density estimation. Here, a local feature refers to a salient image patch or region 

identified via an interest operator, e.g. extrema of the difference-of-Gaussian operator in the 

popular scale-invariant feature transform (SIFT) [7]. Local features effectively serve as a 

reduced set of information-rich image content that enable highly efficient image processing 

algorithms, for example feature correspondence in O(log N) computational complexity via 

fast approximate NN search methods [9, 10]. Early feature detection methods identified 

salient image locations [14], scale-space theory [15] lead to the development of so-called 

scale-invariant [7] and affine-invariant [16] feature detection methods capable of repeatedly 

detecting the same image pattern despite global similarity and affine image transforms, in 

addition to intensity variations.

Once detected, salient image regions are cropped and spatially normalized to patches of size 

D voxels, then encoded as compact, highly distinctive descriptors for efficient indexing, e.g. 

the gradient orientation histogram (GoH) representation [7]. Note that there is a tradeoff 

between the patch dimension D and the number of unique samples available to populate the 
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space of image patches . At one extreme, voxel-size patches lead to a densely sampled 

but relatively uninformative R1 space, while at the other extreme, entire images provide an 

information-rich but severely under-sampled RN space. Intermediately-sized observations 

have been shown to be most effective for tasks such as classification [17]. Note also that 

many patches are rarely observed in natural medical images, and the typical set of patches is 

concentrated within a subspace or manifold . Furthermore, local saliency operators 

further restrict the manifold to a subset of highly informative patches , as 

common, uninformative image patterns are not detected, e.g. non-localizable boundary 

structures or regions of homogenous image intensity.

Salient image content can thus be modeled as a set of local features, e.g. within a spatial 

configuration or as an unordered bag-of-features representation when inter-feature spatial 

relationships are difficult to model. Probabilistic models for inference typically require 

estimating densities from feature data. Non-parametric density estimators such as KDE or 

KNN estimators are particularly useful as an explicit model of the joint distribution is not 

required. They can be computed on-the-fly without requiring computationally expensive 

training, e.g. via instance-based or lazy-learning methods [18, 13, 19]. KDE seeks to 

quantify density from kernel functions centered around training samples[20, 11], whereas 

KNN estimators seek to quantify the density at a point from a set of K nearest neighbor 

samples [12, 18, 13, 19]. An interesting property of KNN estimators is that when used in 

classification, their prediction error is asymptotically upper bounded by no more than twice 

the optimal Bayes error rate as the number of data grow [12]. This property is particularly 

relevant given the increasing size of medical image data sets.

In the context of medical image analysis, scale-invariant features have been used to align 

and classify 3D medical image data [8, 21, 22], however they have not yet been adapted to 

large-scale indexing and inference. Although our work here focuses on inference, the 

feature-based correspondence framework is generally related to medical image analysis 

methods using nearest neighbors or proximity graphs across image data, including subject-

level recognition [5], manifold learning [3, 2, 23], in particular methods based on local 

image characteristics [24, 25] and multi-atlas labeling[26].

The experimental portion of this paper investigates chronic pulmonary obstructive disorder 

(COPD) in a large set of multi-site lung CT images. A primary focus of COPD imaging 

research has been to characterize and classify disease phenotypes. Song et al. investigate 

various 2D feature descriptors for classifying lung tissues including local binary patterns and 

gradient orientation histograms [27]. Several authors propose subject-level COPD prediction 

as an avenue of exploratory research. Sorensen et al. [13] use texture patches in a binary 

classification COPD = (0,1) scenario on single-site data to achieve an area-under-the-curve 

(AUC) classification of 0.71. Mets et al. [28] use densitometric measures computed from 

single-site data of 1100 male subjects, to achieve an AUC value of 0.83 for binary COPD 

classification. Gu et al. [29] use automatic lung segmentation and densitometric measures to 

classify single-site data according to the GOLD range, achieving an exact classification rate 

of 0.37, or 0.83 if classification into neighboring categories is considered correct. A major 

challenge is classifying multi-site data acquired across different sites and scanners. On a 

large multi-site data set, our method achieves exact and one-off classification rates of 0.48 
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and 0.89, respectively, which to our knowledge are the highest rates reported for GOLD 

classification.

3 Method

3.1 Estimating Class Probabilities

Let  be a D-dimensional vector encoding the appearance of a scale-normalized 

image patch, e.g. a scale-invariant feature descriptor, and let F = {fi} be a set of such 

features extracted in an image. Let C be a clinical variable of interest, e.g. a discrete measure 

of disease severity, defined over a set of M values [1, . . ., m]. Finally let Ci represent the 

value of C associated with feature fi.

We seek the posterior probability p(C|F) of clinical variable C conditioned on feature data F 

extracted in a query image, which can be expressed as

(1)

In Equation (1), the first equality follows from Bayes’ rule, and the second from the so-

called Naive Bayes assumption of conditional feature independence. This strong assumption 

is often made for computational convenience when modeling the true joint distribution over 

all features F is intractable. Nevertheless, it often leads to robust, effective modeling even in 

contexts where conditional independence does not strictly hold. Conditional independence is 

reasonable in the case of local image observations fi, as patches separated in scale and space 

do not typically exhibit direct correlations. On the RHS of Equation (1), p(C) is a prior 

distribution over the clinical variable of interest C, and p(fi|C) is the likelihood function of C 

associated with observed image feature fi.

We use a robust variant of kernel density estimation for calculating the class conditional 

likelihood densities:

(2)

Here NC is the number of features of class C in the training data, and  is the total 

feature count. d(fi, fj) is the distance between fi and neighboring descriptor fj, here the 

Euclidean distance between descriptors. α is an adaptive kernel bandwidth parameter that is 

empirically set to dNNi for each input feature fi, i.e. the distance between fi and the nearest 

neighboring descriptor fj in a data base of training data:

(3)

Finally, β is a weighting parameter empirically set to β = 1 in experiments for best 

performance. Note that the overall scale of the likelihood is unimportant, as normalization 

can be performed after the product in Equation (1) is computed.
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In practice, Equation 2 is computed for each fi from a set of KNNi = {(fj, Cj)} of K feature/

label pairs (fj, Cj) identified via an efficient approximate KNN search over a set of training 

feature data. Because the adaptive exponential kernel falls off quickly, it is not crucial to 

determine an optimal K as in some KNN methods [18], but rather to set K large enough 

include all features contributing to the kernel sum. Inuitively, the two terms in Equation 2 

are designed as a mixture model that is aimed at increasing the robustness of estimates when 

some of the features are “uninformative”. The first term is a density estimator that accounts 

for informative features in the data. It is a variant that combines aspects of kernel density 

estimation and KNN density estimation, using a kernel where the bandwidth is scaled by the 

distance to the first nearest neighbor as in Breiman et al. [20]. The second term 

provides a default estimate for the case of uninformative features, curiously this class-

specific value results in noticeably superior classification performance than a value that is 

uniform across classes.

3.2 Computational Framework

To scale to large data sets of medical images, our inference method focuses on rapidly 

indexing a large set of image features. A variety of local feature detectors exist, we adopt a 

3D generalization of the SIFT algorithm [8], where the location and scale of distinctive 

image patches are detected as extrema of a difference-of-Gaussian operator. Once detected, 

patches are reoriented, rescaled to a fixed size (113 voxels) and transformed into a GoH 

representation over 8 spatial bins and 8 orientation bins, resulting in a 64-element feature 

descriptor. Finally, rank-ordering[30] transforms descriptor elements into an ordinal 

representation, where elements take on their rank in an array sorted according to GoH value. 

Once extracted, descriptors can be stored in tree data structures for efficient NN indexing. 

Again, d(fi, fj) can be defined according to a variety of measures such as geodesic distance, 

here we adopt the Euclidean distance between descriptor elements. Exact NN search is 

difficult for high dimensional descriptors, however approximate KNN methods can be used 

to identify NNs with high probability in O(log N) search time, for example via randomized 

K-D search tree [9].

4 Experiments

Experiments focus on analyzing Chronic Obstructive Pulmonary Disorder (COPD), an 

important health problem and a leading cause of death. We test our method on lung CT 

images from the COPDGene data set [1] acquired for the purpose of characterizing COPD 

phenotypes and associated genetic links. The COPDGene dataset consists of 19,000 lung CT 

images of 10,300 subjects with clinical and demographic labels, where expiration and 

inspiration images are acquired for most subjects. Data are acquired at 21 clinical centers 

with CT scanners from a variety of different vendors, making the dataset a diverse multi-site 

test bed for practical big data algorithms. The clinical COPD measurement of interest is the 

GOLD score, which quantifies COPD severity on a scale of 0-4 based on spirometry 

measurements.

The only data preprocessing step in our pipeline is 3D scale-invariant feature extraction 

from images using the implementation described in [8]. Note that feature extraction is robust 
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to variations in image geometry and intensity, and domain-specific pre-processing steps 

such as lung segmentation are unnecessary. Feature extraction is a one-time processing step, 

requiring on the order of 20 seconds for an image of size 2563 voxels (0.6mm isotropic 

resolution), after which features can be efficiently indexed. All feature extraction was 

performed on a commodity cluster computing system over the course of several hours. Each 

lung CT image results in approximately 5000 features, and the set of 19,000 images results 

in a total of 95,000,000 features. While the original image data occupies 3.8TB when gzip-

compressed, the feature data requires only 8.6GB, representing a data reduction of 440X. 

Feature extraction can thus be viewed as a form of lossy compression, where the goal is to 

retain as much salient information as possible while significantly reducing the memory 

footprint. Given the relatively small size and usefulness of feature data, it may be useful to 

include it as part of a standard markup for efficiently indexing future image formats, e.g. 

DICOM extensions.

4.1 Computer-assisted COPD Prediction

A primary goal of the COPDGene project is to identify disease phenotypes in order to better 

understand and characterize COPD. To this end, we investigate computer-assisted prediction 

of COPD, based on the five GOLD categories ranging from 0 to 4 in increasing order of 

severity. For clarity we experiment with a balanced set of data with 523 images per GOLD 

category, for a total of 2615 images and 13,000,000 features. We use only expiratory images 

in order to evaluate algorithm performance in isolation from confounds such as shape 

change during breathing. Maximum a-posterior (MAP) estimation is used to predict the most 

probable GOLD score CMAP for each new feature set F in a leave-one-out manner:

(4)

Note that for experiments, the prior p(C) from Equation (1) is taken to be uniform. The 

leave-one-out methodology is implemented efficiently using the K-D search tree method of 

Muja and Lowe [9] to compute NN correspondences. In this method, features are indexed in 

a set of independent search trees, whose data splits are chosen randomly amongst the subset 

of feature descriptor elements exhibiting the highest variability. As a figure of merit we 

consider both the accuracy of exact prediction and one-off prediction, i.e. where CMAP 

predicts a GOLD score one off from the true label. Prediction is also tested on various 

training set sizes, in order to investigate the effect on prediction accuracy. Graphs of 

prediction results are shown in Figure 1, and Table 1 lists the confusion matrix for 

prediction on 2615 training subjects.

In our method, feature-wise densities p(fi|C) quantify the informativeness of individual 

features fi with respect to labels Ci, e.g. as in feature-based morphometry [21]. These 

densities may be useful in investigating and characterizing COPD phenotypes, this is a topic 

of ongoing investigation in our group. Figure 2 shows the 20 features with the highest p(fi|C) 

for images from either extreme of the GOLD severity rating.

Parameter K is typically important in KNN estimation methods, however our method does 

not vary significantly with changes in K above a certain value due to the drop-off of the 
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adaptive exponential kernel. Figures 3 a) and b) illustrate inter-feature distances and their 

weighted kernel values for several typical features across K=100 neighbors. The result of 

prediction tends to stabilize for K ≥ 100. We attempted KNN density estimation for various 

values of K via standard counting as in [13], however classification performance was 

relatively poor and varied noticeably with values of K. We found the best means of 

improving performance was to adopt the kernel weighting scheme in Equation (2).

Although the training sets used here for prediction are balanced in terms of the number of 

subjects, individual images produce different numbers of features. Figure 4 a) shows the 

feature counts NC for GOLD categories. Figures 4 b) and c) show how changes in either α or 

β result in prediction that is noticeably skewed towards or away from GOLD categories (e.g. 

here GOLD 1, 3 or 4) with higher feature counts.

4.2 Subject-level Indexing

Large, multi-site image data sets can quickly become difficult to manage. Image labeling 

errors may be introduced in DICOM headers [31], and images of subjects may be 

inadvertently duplicated, removed or modified, compromising the data integrity and 

usefulness. We propose subject-level indexing to identify all instances of the same subject 

within a data set, in a manner similar to recent work in brain imaging [5], in order to inspect 

and verify data integrity. Subject ID is used as the clinical label of interest C, and inference 

seeks to identify highly probable labels p(C|F) given feature data F from a test subject. Note 

that inference must be robust to large deformations due to inhale and exhale state, our 

method accomplishes this purely from local feature appearance information, parameters of 

feature geometry are not used (i.e. image location, scale, orientation).

Subject-level indexing effectively computes the image-to-image affinity matrix between all 

19,000 image feature sets. The processing time is ≈6 hours on a laptop (MacBook Pro) 

using a single core, with a breakdown of ≈1hr for data read-in and ≈5hrs for KNN feature 

correspondence (≈1 second per subject). This is effectively equivalent to ≈180,000,000 

pair-wise image registrations (assuming a symmetric registration technique). Note that here, 

correspondences are established across significant lung shape variation due to breathing 

state, as both expiration and inspiration are used. To our knowledge, all images are correctly 

grouped according to subject labels, using an empirically determined threshold on the 

posterior probability. A set of 65 images are flagged as abnormal, either duplicate images 

(unusually high posterior probability indicating identical feature sets) or different images of 

the same subject (high posterior probability). A partial list of 20 unintentional duplicate 

subject scans was compiled from genetic information, all were successfully identified as 

same subjects via subject-level indexing. The remaining abnormalities are currently being 

investigated.

5 Discussion

We presented a general method for analyzing large sets of medical images, based on nearest 

neighbor scale-invariant feature correspondences and kernel density estimation. The method 

scales well to large medical image sets in two respects. First, efficient approximate NN 

search techniques can be used to achieve correspondence in O(log N) computational 
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complexity, as to opposed O(N) pairwise image or feature matching algorithms which 

quickly become intractable for large data sets. Second, probabilistic inference can be 

performed on-the-fly from feature data, without parametric models or potentially expensive 

training procedures. A hybrid KDE-KNN kernel density estimator with an adaptive 

bandwidth parameter is used to robustly estimate likelihood factors from nearest neighbor 

features.

Our method is demonstrated on 19,000 lung CT images of 10,300 subjects from the multi-

site COPDGene data set. Subject-level indexing demonstrates that images of the same 

subject can be robustly identified across deformation due to breathing, and erroneous 

instances of subject duplication can be flagged. State-of-the-art results are obtained for 

multi-site multi-class prediction of clinical GOLD scores, improving on methods involving 

special purpose lung segmentation and densitometric measures. The prediction result is 

important, because it suggests the existence of disease-related anatomical patterns that could 

help to better understand COPD. It may be that the 3D SIFT representation is particularly 

well-tuned to anatomical structure of lung parenchyma related to COPD. Future work will 

focus on analysis of disease-informative features, identifying disease phenotypes. One 

avenue will be to incorporate feature geometry (e.g. location, scale) within modeling. 

Finally, our method is general and could be used to organize large sets of general medical 

image data, e.g. brain or full-body scans. Software described in this paper will be provided 

to the public for research use.

We believe there is a good deal of potential for studying large sets of medical images via the 

local feature framework, e.g. 3D SIFT features or other suitable data-driven extractors. 

While they may be a coarse approximation to the original image, local features often contain 

enough salient information to robustly and efficiently perform tasks such as registration or 

classification. This is particularly true where the quantity of data an algorithm is capable of 

exploiting begins to compensate for the coarseness of its representation, i.e. via efficient 

search methods. The general framework can be used to efficiently generate proximity graphs 

between large sets of medical image data, and may thus be useful in the context of other 

computational approaches such as manifold learning [32, 2].
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Fig. 1. 
a) GOLD prediction accuracy (one-off and exact) as a function of the number of training 

subjects. b) Curves for predicted vs. actual GOLD values for all 2615 training subjects. 

State-of-the art classification is achieved, with an accuracy of 48% for exact prediction and 

89% for one-off prediction. Note the gradual transitions across predicted GOLD labels in b), 

as expected in the case of a COPD severity continuum.
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Fig. 2. 
Visualizing the 20 disease-informative features with the highest p(fi|C) for a) GOLD 0 and 

b) GOLD 4. Informative features are typically scattered throughout the lungs and range in 

size from from 2-5mm. Note feature scale is not displayed.
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Fig. 3. 
a) NN feature distance d(fi, fj) for 10 typical features fi and K=100 neighbors fj, sorted by 

increasing distance right-to-left. b) Weighted kernel values of Equation (2) for the same 

features and neighbors, note kernel values become negligible by K=100.
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Fig. 4. 
Graph a) illustrates feature counts NC over GOLD categories. Graphs b) and c) illustrate 

skewed prediction from unoptimal kernel parameters in Equation (2), b) α = 0.5 dNNi and c) 

from β = 5.
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Toews et al. Page 15

Table 1

Confusion matrix for COPD GOLD category prediction, 523 subjects per category using K=100. Bold values 

indicate exact prediction.

GOLD Predicted GOLD

0 1 2 3 4

0 303 164 43 5 8

1 141 283 60 21 18

2 95 160 132 87 49

3 21 43 98 188 173

4 5 9 21 114 374
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