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Abstract

Understanding the early dynamics of the highly folded human cerebral cortex is still an actively 

evolving research field teeming with unanswered questions. Longitudinal neuroimaging analysis 

and modeling have become the new trend to advance research in this field. However, this is 

challenged by a limited number of acquisition timepoints and the absence of inter-subject 

matching between timepoints. In this paper, we propose a novel framework that unprecedentedly 

solves the problem of predicting the dynamic evolution of infant cortical surface shape solely from 

a single baseline shape based on a spatiotemporal (4D) current-based learning approach. 

Specifically, our method learns from longitudinal data both the geometric (vertices positions) and 

dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a 

training stage and a prediction stage. In the training stage, we first use the current-based shape 

regression model to set up the inter-subject cortical surface correspondences at baseline of all 

training subjects. We then estimate for each training subject the diffeomorphic temporal evolution 

trajectories of the cortical surface shape and build an empirical mean spatiotemporal surface atlas. 

In the prediction stage, given an infant, we first warp all training subjects onto its baseline cortical 

surface. Second, we select the most appropriate learnt features from training subjects to 

simultaneously predict the cortical surface shapes at all later timepoints from its baseline cortical 

surface, based on closeness metrics between this baseline surface and the learnt baseline 

population average surface atlas. We used the proposed framework to predict the inner cortical 

surface shape at 3, 6 and 9 months from the cortical shape at birth in 9 healthy infants. Our method 

predicted with good accuracy the spatiotemporal dynamic change of the highly folded cortex.

1 Introduction

The highly folded human cerebral cortex nests vital cognitive and decision-making functions 

that control our behavior. Analyzing cortical morphometrics from neuroimages opens a wide 

widow to pinpoint population and individual based cortical growth patterns [1]. In 

particular, characterizing the morphological dynamics of the cerebral cortex as it matures 

will enable us to examine their relationship with functional dynamics and thereby advance 

our understanding of how the cerebral cortex grows and what modulates its development 

[2]. Besides, quantifying cortical morphological dynamics at an early stage of cortical 

growth will help unravel early developing brain disorders [3]. More importantly, the 
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possibility of predicting cortical morphological changes will eventually help improve 

prognosis for infants with neurodevelopmental brain disorders.

However, despite their importance, modeling approaches for examining the early postnatal 

human brain morphometrics and dynamics using longitudinal neuroimaging data are scarce. 

In [4], a computational mechanical cortical growth model was developed to simulate the 

dynamics of cortical folding from longitudinal data in the first year of life, during which the 

cortical surface area increase by 76% [3]. Although promising, this method requires the use 

of cortical surfaces at all later timepoints of the same infant to guide the growth model and 

also will gradually lose its accuracy and informative potential as the number of data 

acquisition timepoints decreases. Ideally, a cortical growth model should be able to 

accurately and dynamically predict the highly convoluted shape of the cortical surface from 

one or a very limited number of input surfaces. By cortical dynamic prediction, we imply 

the estimation of the spatiotemporal cortex shape deformation in the future (i.e. the 

evolution trajectories of the shape) using a set of existing observations and measurements. 

Recently developed methods [5–8] proposed various geodesic shape regression models to 

estimate smooth diffeomeorphic evolution trajectories; however, they were implemented for 

image time-series change tracking. A non-linear mixed effect dynamic prediction model was 

proposed in [9] to estimate temporal change trajectories of radial diffusivity images derived 

from diffusion tensor imaging (DTI) of early brain development. However, its application 

was only limited to estimate region-level changes in the image space, and also it required a 

predefined complex parametric form of the development trajectory.

This paper proposes a learning-based framework that predicts the dynamic postnatal cortical 

shape from a single baseline cortical surface at birth using a recently developed 

spatiotemporal (4D) diffeomorphic surface growth model based on the theory of 

‘measuring’ a surface as a current [10, 11]. The theory of currents elegantly and generically 

represents a shape as a current without the need to establish the point-to-point surface 

landmark correspondence on the longitudinal and cross-sectional shapes. Furthermore, 

piece-wise geodesic current deformation trajectories can be estimated from disparately 

spaced-out measurements in time for 0-currents (set of points), 1-currents (curves), 2-

currents (surfaces) and 3-currents (volumes) using a robust converging numerical scheme 

developed in [10]; thereby facilitating the integration of multidimensional shapes from 

multimodal images in a unified statistical framework for data analysis. Specifically, our 

approach is composed of a training stage and a prediction stage. In the training stage, the 

proposed framework learns both geometric (vertices positions) and dynamic (smooth and 

invertible evolution trajectories) features of cortical surface growth for each infant using the 

available acquisition timepoints. We then estimate the mean empirical spatiotemporal atlas 

at the most commonly shared timepoints among the training subjects to simultaneously 

initialize the cortical surface shapes at all later timepoints for prediction. In the prediction 

stage, for each new subject, we refine this initialization by jointly moving some vertices 

based on different closeness metrics between the baseline cortical shape and the baseline 

cortical atlas. Once the baseline vertices positions are updated, they form together a virtual 

baseline shape, which is proximal to the ground truth baseline cortical shape. Finally, 

retrieving the corresponding learnt smooth deformation trajectory for every vertex belonging 
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to the constructed virtual shape predicts the cortical shape up to the last timepoint in the 

training dataset. Of note, the proposed method requires neither predefined prarametric forms 

of the cortical developmental trajectories nor the guidance from the later time points of the 

same subject.

2 Current-based Learning of Shape Growth Model

2.1 Spatiotemporal current-based atlas building (training stage)

We first present the key mathematical ingredients for ‘measuring’ a surface as a current. In 

this context, the current metric is used for building a diffeomorphic regression model that 

matches a set of shapes  = {S0, . . . , SN} with high accuracy as demonstrated in [11]. More 

details can be found in [10, 11].

Cortical surface representation using currents—The concept of representing a 

surface as a current derives from Faraday’s law of induction in physics, which states that the 

variation of any magnetic vector field W through a surface S induces a current in the space 

W* within a wire loop delimiting S [10]. The intensity of the current is proportional to the 

variation of the flux of this magnetic field, which mathematically translates as an integration 

of the vector field elements ω ∈ W along the shape unit normal vectors n: S = ∫ 

ω(x)tn(x)dλ(x), where dλ denotes Lebesgue measure on the surface. Hence, a surface can be 

geometrically defined as the collection of local fluxes for all possible vector fields traversing 

it. In this regard, W is defined as a Reproducing Kernel of Hilbert Space (RKHS) spanned 

by convolutions between a square integrable vector field and a Gaussian smooth kernel 

. The rate of decay of the kernel σw denotes the scale under 

which the geometric details of the surface –when converted into a current– are overlooked.

A vector ω ∈ W can be measured at a location x for any fixed points y and vectors α as a 

convolution between the kernel KW and vectors α: ω(x) = KW(x, y)α(y), where the couple (x, 

α) is called a momentum. On the other hand, the space of currents W* is defined as a vector 

space containing the set of all continuous linear maps from W to ℝ (i.e. the dual space of W). 

Any current in W* is then defined as: , where  defines a Dirac delta 

current. Although it is scale-dependent, W enables to densely ‘convert’ the surface S into a 

current by locally measuring these localized Dirac delta currents and summing them up: 

; thus S becomes fully parameterized by its meshes (triangles) k and normals nk 

located at each center of these meshes and approximated using the Dirac delta currents 

located at the center of each of its meshes k (Figure 1). Hence, any surface can be 

decomposed into an infinite sum of Dirac delta currents which act as basis vectors in the 

space of currents W*. More importantly, the current space W* is endowed with a metric that 

enables us to measure the distance between two shapes (i.e. two currents): 

 where  and , thereby elegantly 

paving the way to formulate and solve geodesic surface matching problems.

Spatiotemporal diffeomorphic current-based surface regression model—
Considering a set of longitudinal cortical surfaces  = {S0, . . . , SN} acquired at different 
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timepoints ti, i ∈ [0,N], we estimate a spatiotemporal surface growth model that successively 

deforms the baseline shape S0 onto the consecutive shapes: S(t) = ξt(S0). This deformation 

process is guided by the diffeomorphic mapping ξt, which identifies for each mesh the 

optimal evolution trajectory as a solution of the following flow equation:

Here vt ∈ V denotes the time-dependent deformation velocity. To guarantee the smoothness 

and the invertibility of the estimated deformation trajectory ξt, the velocity field V is defined 

as a RKHS with a Gaussian kernel KV . The deformation kernel decays at a rate σV denoting 

the scale under which deformations are locally similar to the identity map (no deformation). 

The time-dependent velocity writes as , with M the number 

of meshes in the baseline shape S0 [10]. For a static shape S0, the vector field W associated 

with it is closely spanned by the the momenta (x, n). To cause S0 to become dynamic and 

warp it onto different shapes, an external momentum (xk, αk) of the deformation field locally 

acts on its Dirac delta currents  to geodesically deform it into the consecutive observed 

shapes. The estimation of the momenta (xk(t), αk(t)) fully defines the surface deformation 

process from t = 0 to t = T. This is achieved through conjugate gradient descent algorithm 

minimizing the following energy:

Where γ denotes a trade-off parameter between the total kinetic energy of the deformation 

(first term) and the similarity measure between the deformed baseline shape and the 

consecutive ground truth observations (second term).

Current-based geometric and dynamic features learning—In the training stage, 

we estimate a cortical surface growth scenario for each infant in our training dataset using 

the available MR acquisition timepoints. We first register all the baseline surfaces of the 

training subjects into a common space. Then, for each warped baseline shape in this space, 

we estimate its temporal evolution trajectory. Both of these steps are achieved using the 

current-based deformation model, thereby providing a normalized current space, where all 

subjects’ longitudinal shapes become ‘linked’ in space and time. This facilitates inter-

subject comparison of deformation features estimated at any timpoint falling in the in-

between obervations interval ]ti, ti+1[. At this point, we introduce the notion of a cloud , 

which is composed of points c(x, t) = (x, ξ(x, t)) with x a vertex belonging to any baseline 

shape S0 in the training data and ξ(x, t) as its corresponding temporal deformation trajectory. 

In other words, a point c(x, t) in the cloud locates the new position ξ(x, t) of any baseline 

vertex x at a specific timepoint t. Here, the 3D position of any baseline vertex x defines the 

geometric feature and its evolution trajectory c(x, t)t∈[0,T ] defines the dynamic feature of the 

learnt model. We will exploit both of these features to predict the evolution trajectory for a 

new baseline shape.
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Cortical spatiotemporal atlas estimation—For each of the most commonly shared 

acquisition timepoints ti{i∈0,...,N}, we build an empirical mean atlas  by computing the 

mean 3D position of the spatiotemporally aligned training subjects. We also include the 

estimated shapes using the current-based surface growth model for the atlas building if these 

shapes were acquired at ±1–month gap from the ground-truth shape (Figure 2). Indeed, at 

±1–month gap, the current-model recovers neighboring information with high accuracy 

(mean ± std = 1.05 ± 0.16mm). One could intuitively explain this by recalling the principle 

of the least action in a classical mechanical Lagrangian framework, which grounds the 

diffeomorphic geodesic surface deformation framework. This strategy allows us to include 

more data into building the temporal atlas { } with t ∈ {t0, . . . , tN} and to better capture 

inter-subject variability.

2.2 Prediction using the learnt geometric and dynamic features

To predict the evolution of the cortical surface for a new infant, the only information we 

need is the shape of the baseline cortical surface S0 (at the first acquisition timepoint). Here 

we propose two different methods that exploit S0 to select geometric and dynamic features 

from the cloud. The extracted features will define the temporal evolution of the cortical 

surface up to the last common acquisition timepoint in the training dataset. Both methods are 

based on the intuitive idea that vertices in the baseline ground truth shape dynamically 

behave in a way that is similar to their nearest neighboring vertices in the cloud. 

Subsequently, we introduce the concept of a virtual shape that explores the learnt shape 

features to find the closest shape in the cloud to the baseline shape S0. The prediction 

framework for the spatiotemporal evolution of the ground truth surface S0 is composed of 

two main steps:

• Step 1: Virtual shape construction for simultaneous shape prediction at all late 
timepoints. First, we define a virtual shape Svirtual as the ensemble of baseline 

vertices from the cloud  that are close to the ground truth baseline shape S0 

(Figure 3). We initialize the virtual shape as the baseline atlas shape  and also the 

shapes to predict {S̃
i} as the mean atlases  at the timepoint ti. If the error distance 

between any vertex in the mean atlas shape  and its corresponding baseline vertex 

in S0 is smaller than, then we keep this vertex unmoved. Otherwise, we seek the 

closest vertex from the cloud that is within an -neighborhood of the current vertex. 

If the -closest vertex exists, then the position of the current vertex in Svirtual is 

updated accordingly. Otherwise, for vertices in Svirtual having no closest vertex in 

the –range in the baseline shape, we propose two closeness metrics to construct the 

virtual shape Svirtual:

1. The Mahalanobis distance from the cloud (Metric 1): We use the 

Mahalanobis metric to update vertices in Svirtual that are > ε–further from the 

baseline shape S0. More specifically, we select vertices from the cloud C that 

are closer to S0 and fall within the –neighborhood.
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 is the points of the cloud C that belong to the jth subject in the training 

dataset. Σj is the covariance matrix of the vertices in the cloud . Finally, for 

each vertex in the virtual shape, we retrieve its dynamic feature c(x, t)t∈[0,T ] 
from the cloud. This ultimately defines the smooth temporal trajectory for 

every vertex in the constructed virtual shape and predicts its shape at any 

later timepoint.

2. The k–closest neighbors from the cloud (Metric 2): We update the position 

of a virtual vertex x that is > –far from S0 by computing the mean position of 

the k-closest vertices in the cloud to x using Euclidean distance. We compute 

the mean evolution trajectory ξ̄ over the k retrieved trajectories. This mean 

spatially smoothed trajectory predicts the growth of the input baseline 

surface S0.

These key steps are briefly stated in Algorithm 1.

Algorithm 1

Prediction of cortical surface shape evolution from a baseline shape

1: INPUTS:

  The learnt mean atlases 

  The learnt cloud C

  The baseline ground truth shape S0

2: Initialize Svirtual ← 0.

3: Initialize S̃
i ← i for i ∈ {1, . . . , N}

4: Initialize ε as the mean distance between S0 and 0 plus its standard deviation

5: for every vertex x in the virtual shape Svirtual that is located outside the ε–neighborhood from S0 
do

  Update its position using the closeness metric (1 or 2)

  Retrieve (or update if using Metric 2) its dynamic feature (evolution trajectory) c(x, t)t∈[0,T]

S
∼

i (x) = c(x, ti)

6: end for

7: Estimate the geodesic current-based baseline shape evolution using {S0, {S̃
i}} by minimizing:

E
∼

= ∫0
1

vt V
2 dt +

1
γ ∑i S

∼
i - ϕti

v · S0 W ∗

8: OUTPUT:

  Set of predicted surfaces { S̃
i} at timepoints ti with i ∈ {0, . . . , N}

  Set of smooth temporal evolution trajectories for vertices in S0 for t ∈ [0, tN]

• Step 2: Estimation of a geodesic evolution of the cortical shape for a new subject. 
Once the set of shapes {S̃

i} are predicted at later timepoints, we minimize the 
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energy Ẽ (Algorithm 1) to estimate the spatiotemporal deformation trajectory of the 

baseline shape S0.

3 Results

3.1 Data and parameters setting

We evaluated the proposed framework on longitudinal inner cortical surfaces of 9 infants 

randomly selected from 17 healthy infants, each with 4 serial MRI scans acquired at around 

birth, 3 months, 6 months and 9 months of age. After rigid alignment of longitudinal and 

cross-sectional infant MR images and brain tissue segmentation, we reconstructed the 

cortical surfaces with correct topology and geometry using the method proposed in [12]. We 

used the current-based geodesic shape regression model with parameters γ = 10−5, σW = 5, 

and set σV as half size the bounding box confining the surface at the last acqusition 

timepoint [10, 11].

3.2 Cortical shape prediction evaluation

We built three spatiotemporal atlases using alternatively selected 14 different training 

subjects from the dataset, while leaving 3 subjects for testing to predict the inner cortical 

surface shape at 3, 6 and 9 months from the cortical surface shape at birth.

Spatiotemporal mean population atlas building—We set the inter- and intra-subject 

cortical correspondences using the current-based shape regression model, so we can easily 

navigate from any subject at any timepoint to a different subject at a different timepoint. We 

then built spatiotemporal mean atlases at 0, 3, 6 and 9 months. Each spatiotemporal atlas 

{ , , , } was estimated using 14 infants, while leaving 3 infants out for testing.

Cortical shape prediction from the baseline cortical surface S0—We 

implemented Algorithm 1 using the two proposed closeness metrics to construct the virtual 

shape for each of the 9 testing infants. The parameter ε was fixed as the mean distance 

between S0 and  plus its standard deviation. We chose k = 4 closest neighbors for the 

second metric. We display in Table 1 a comparison between the prediction surface distance 

error for the two different metrics. Clearly, the prediction method based on Metric 2 shows a 

more promising performance in decreasing the prediction errors at later timepoints, 

compared with Metric 1 (Table 1). One could intuitively explain this observation as a result 

of including more vertices (here k = 4 closest neighbors) from the cloud to contribute into 

building more robust baseline virtual shape Svirtual. This in turn allows to stretch the 

neighborhood of vertices formed when shooting Svirtual to the next missing timepoint by 

tracking their temporal evolution trajectories. In other words, this leads to better capture 

inter-subject spatial variability at later timepoints. Therefore, Metric 2 was used to build the 

spatiotemporal evolution of the baseline shape S0.

We show in Figure 4 the vertex-wise distance error map between the predicted {S̃
i} and the 

ground truth shapes {Si} at 3, 6 and 9 months (top row) and their spatial overlap (bottom 

row) for one representative testing infant. The prediction error gradually increases as the 

shape to predict becomes very distant in time from S0.
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Figure 5 (a) and (b) shows the mean value and standard deviation prediction errors over the 

9 testing infants in each cortical region defined in [13] at 3, 6 and 9 months. The average 

distance errors over two hemispheres and across all 36 ROIs are 0.811mm, 0.953mm and 

1.011mm at 3, 6, and 9 months, respectively. As we can see, the distance errors are quite 

small, although they gradually increase from 3 to 9 months. Besides, the mean prediction 

error across the 9 subjects peaks at 0.86mm (in the right and left temporal poles), 1.11mm (in 

the right and left superior temporal gyri) and 1.05mm (in the right and left superior temporal 

gyri) successively for 3, 6 and 9 months. We also observe regionally non-uniform error 

maps, which is most likely caused by the spatially variable inter-subject variations in terms 

of cortical folding and its development. We also report the percentage of surface area 

difference in each ROI between the ground truth and the predicted cortical surfaces in 

Figure 5 (c). The average surface area difference across all ROIs are 7.8%, 12.9% and 

15.4% at 3, 6, and 9 months, respectively, further demonstrating the good performance of 

the proposed method.

4 Discussion and conclusion

We presented the first prediction model for dynamic cortical surface evolution in infants 

during the first year based solely on a single baseline cortical shape. We used the 

diffeomeorphic 4D current-based shape regression model to learn both geometric and 

dynamic features of cortical surface shape growth for shape prediction at later timepoints. 

Although the infant cortical shape is very challenging to model due to its highly convoluted 

foldings and dynamic growth, the proposed framework showed promising prediction results. 

We would like to note that the proposed learning framework is generic and can also be 

applied to a new infant that has a limited set of measurements. In our future work, we would 

further boost up its performance by including more than one input shape and also additional 

morphological features (e.g. surface thickness or gyrification index) for predicting the shape 

evolution in space, time and morphology. Furthermore, exploring the recently developed 

unbiased approaches for 3D shape atlas building may also increase the prediction accuracy 

[14].
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Fig. 1. Geodesic longitudinal shape regression using currents

Each cortical surface Si is represented by the sum of the Dirac delta currents  with xk 

being the center of the mesh k (triangle) and nk as its normal (illustrated in the left 

hemispheres).
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Fig. 2. An overview of the proposed framework for learning dynamic cortical surface growth 
(training stage)
We estimate a smooth temporal trajectory for each of the baseline cortical shapes in the 

training dataset. Here we overlay the ground truth shapes (transparent gray) with the 

estimated ones. A spatiotemporal atlas is built at the most commonly shared acquisition 

timepoints in the training subjects. We also include the estimated cortical surface if it is ±1–

month distant from the ground truth in the atlas building process.
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Fig. 3. Illustration of the concept of the cloud  and the virtual shape Svirtual used in the 
prediction stage
The green vertices visible in the overlap between the baseline atlas  and the virtual shape 

Svirtual were updated using better candidates from the cloud C. Notice that we have a good 

overlap between the baseline atlas shape and the baseline input shape S0. Orange, blue and 

red vertices belong to the cloud where their learnt trajectories can be easily retrieved to track 

forth their spatiotemporal deformation. The blue rectangles represent the later timepoints 

where the spatiotemporal atlas was estimated.
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Fig. 4. Spatiotemporal shape prediction in one representative infant
(Top row) The 3D surface distance error map between the ground truth shape (in red) and 

the predicted shape (in blue) from the baseline shape S0.
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Fig. 5. 
(A) Mean prediction error and its standard deviation (red bars) in mm across 9 testing 

infants in 36 cortical regions of interest (ROI). (B) Mean prediction error distance (in mm) 

of each ROI mapped onto inflated cortical surface. (C) Absolute surface area difference in 

each ROI (in %) between predicted and ground truth surfaces.
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Table 1
Shape prediction errors (mm) from a single baseline cortical surface for 9 infants

Mean ± standard deviation and median distance between the predicted shape and the ground truth shape were 

computed using metrics 1 (Mahalanobis distance) and 2 (k-closest vertices, k = 4).

Timepoint Mean Error 1 Median Error 1 Mean Error 2 Median Error 2

3 months 1.279 ± 1.692 0.912 1.235 ± 1.604 0.865

6 months 1.324 ± 1.551 0.967 1.296 ± 1.615 0.925

9 months 3.347 ± 8.313 1.414 1.695 ± 3.205 1.147
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