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Abstract

The analysis of the connectome of the human brain provides key insight into the brain’s 

organisation and function, and its evolution in disease or ageing. Parcellation of the cortical 

surface into distinct regions in terms of structural connectivity is an essential step that can enable 

such analysis. The estimation of a stable connectome across a population of healthy subjects 

requires the estimation of a groupwise parcellation that can capture the variability of the 

connectome across the population. This problem has solely been addressed in the literature via 

averaging of connectivity profiles or finding correspondences between individual parcellations a 

posteriori. In this paper, we propose a groupwise parcellation method of the cortex based on 

diffusion MR images (dMRI). We borrow ideas from the area of cosegmentation in computer 

vision and directly estimate a consistent parcellation across different subjects and scales through a 

spectral clustering approach. The parcellation is driven by the tractography connectivity profiles, 

and information between subjects and across scales. Promising qualitative and quantitative results 

on a sizeable data-set demonstrate the strong potential of the method.

1 Introduction

Understanding the brain’s organisation and function remains an elusive goal and a very 

active research subject. There seems to be an agreement amongst scientists that the brain’s 

cortical surface can be separated or parcellated into functionally and structurally distinct 

regions. Many approaches have sought to identify those regions over the years, principally 

relying on anatomical properties. Nonetheless, while some anatomical parcellations are 

widely known and relied upon [8, 18], they do not properly reflect the brain’s structural 

connectivity which is key to understanding its function and the impact of neurological 

diseases. Structural brain connectivity or connectome studies typically rely on anatomical or 

random parcellations to build connectivity graphs from diffusion MRI (dMRI) and 

tractography. However, such parcellations introduce a bias in the way the network is 

constructed and can lead to erroneous connections and conclusions [17]. This issue can be 

addressed via the construction of tractography driven parcellations that will identify distinct 

regions in terms of connectivity, and enable more meaningful connectome analysis.
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A significant amount of effort has been focused on the complementary task of resting state 

functional MRI (fMRI) driven parcellation [4, 7]. Recently, dMRI-driven parcellation has 

gained interest as well. Several methods have focused on parcellation of brain substructures 

[2, 10], modelling the task as a clustering problem driven by the correlation between 

connectivity profiles. Aiming at whole brain parcellation makes the task harder, since the 

high dimensionality of the data prevents the direct use of common clustering techniques.

Clarkson et al. [5] proposed to refine an anatomical parcellation by introducing information 

from dMRI and iteratively updating labels. The method is also extended to groupwise 

parcellation through averaging of the connectivity profiles. Its main drawback is the strong 

bias introduced by the initial anatomical parcellation. Roca et al. [15] proposed an iterative 

approach that aims to reduce the dimensionality of the data. In each iteration, the cortical 

surface is divided into a set of Voronoi cells on which k-medoids clustering is performed. 

Parcels that respect certain size and boundary constraints are excluded from the domain for 

the subsequent iterations. Only a subset of the cortical surface (regions that are strongly 

connected) is parcellated. The method was later extended to a group parcellation [16] 

through averaging of the different subjects’ connectivity profiles. A hierarchical clustering 

based parcellation method was presented in [13]. Despite the appeal of obtaining consistent 

parcellations across resolutions (i.e. number of parcels), hierarchical clustering is at risk of 

propagating errors from low resolution clusterings and does not circumvent the need of 

selecting a number of parcels for further analysis.

While individual parcellations are the most faithful to a given subject’s connectivity, they 

can be sensitive to noise and unreliable. Furthermore, they make group studies difficult as 

there are no direct correspondences across subjects. Such studies are however essential if 

one seeks to identify a common connectome across healthy subjects (a connectome 

“backbone”), which could later enable to evaluate the impact of a disease on the brain’s 

organisation. Both issues can be overcome through a groupwise parcellation approach. 

Existing groupwise methods either seek a matching across subjects after independent 

parcellations [13] relying on possible noisy results, or perform a groupwise parcellation after 

constructing an average connectivity profile [5, 16] which prevents from obtaining single 

subject parcellations. In this paper, we propose a whole brain groupwise parcellation method 

that directly estimates matching parcels across subjects without the need for averaging. We 

borrow ideas from the concept of cosegmentation [12] and design a multi-scale and multi-

subjects spectral clustering method driven by correlation between connectivity profiles. 

Here, consistency across scales (so-called supervertex parcellations of the cortical surface) 

and subjects is enforced via a set of links embedded in a constraint matrix. We tackle the 

challenge of evaluating brain parcellations by computing group consistency and information 

loss based measures, which provide sensible quantitative comparisons across methods and 

distinct groups. Qualitative evaluation shows how correspondences between subject-

dependent parcels are obtained within a group, as well as achieving strong consistency 

across different groups.
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2 Groupwise Multi-Scale Parcellation

In this section, we describe the method for obtaining a group parcellation of the cortical 

surface of a set of N different subjects into K parcels. We represent these surfaces as a 

triangular mesh made of Nυ vertices, and assume all surfaces to be registered to the same 

reference [9]. As a result, all surface vertices have direct correspondence across all subjects. 

Furthermore, we consider that a Nυ × Nυ tractography matrix χSi has been computed from 

diffusion data for each subject Si. Each row of this matrix χSi (v) describes how a vertex v is 

connected to the rest of the cortical surface.

The proposed method is illustrated in Fig.1. For each subject, a set of high resolution 

parcellations is constructed for L different resolution layers (base parcellation). These 

parcellation layers then serve as the basis of a multi-scale groupwise spectral clustering 

problem, where the affinity between vertices is described by the tractography matrix, and 

edges across resolutions and subjects force the parcellations to be consistent.

2.1 Base Parcellation

The first step towards building our groupwise parcellation is to capture structural 

connectivity information at multiple scales through the construction of supervertices at 

different resolutions. Similarly to superpixels [1], supervertices can be seen as an initial 

over-segmentation of the cortical surface based on connectivity information such that 

vertices within a supervertex have very similar connectivity profiles. We rely on the 

geodesic distance between vertices to obtain spatially contiguous supervertices, while the 

correlation between their connectivity profiles enforces homogeneous connectivity.

We are inspired by the method proposed in [14] that relies on Fast Marching to compute 

geodesic distances for surface segmentation. In this setting, the computation of the geodesic 

distance d(v0, v) = U(v) from vertex v0 can be reformulated as a front propagation problem, 

where U follows the Eikonal equation ‖∇U‖F = 1 which can be solved using the Fast 

Marching algorithm. F is the speed function characterising the front propagation. We can 

compute a correlation dependent geodesic distance by defining a correlation weighted speed 

function: F(v) = exp(μρ(χSi (v0), χSi (v))). Here, ρ(․, ․) is the Pearson’s correlation 

coefficient between the vertices’ connectivity profiles χSi (v) and μ is a weighting parameter. 

In this setting, the front will propagate faster towards vertices that have a high correlation 

(i.e. similar connectivity profiles) with the source vertex v0.

Each supervertex resolution is computed through an iterative approach. Given a specified 

number of Nl supervertices, we initialise by uniformly sampling Nl seeds across the brain’s 

cortical surface. At each iteration, we first compute the correlation weighted geodesic 

distance from each seed to the rest of the surface, and build supervertices by assigning a 

vertex to its closest seed. We then reevaluate the seeds by selecting, for each supervertex, 

the vertex that has the highest correlation with the rest of the cluster. This process is iterated 

until convergence for the L different levels.

Each base parcellation level is associated to a Nl × Nl merged connectivity matrix, 

constructed by adding the fibre counts across vertices. The level’s affinity matrix Wl is 
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defined as the Pearson’s correlation coefficient between those merged connectivity profiles. 

In order to obtain spatially contiguous parcels, correlation weighted edges are only 

constructed between supervertices that are adjacent.

Our next step is to build connections between the different base parcellation levels, so as to 

recover a common partition of the cortical surface across resolutions.

2.2 Intra-Subject Connections Between Resolutions

We seek coherence across resolutions by enforcing supervertices that are in similar locations 

on the cortical surface to be assigned to the same parcels through the construction of inter-

resolutions edges.

For a given resolution level l, each supervertex is connected to a supervertex at the finer 

level l − 1 if they share vertices on the original cortical surface. The strength of the edge is 

defined by the amount of overlapping vertices, so that the same parcellation result is 

imposed on supervertices that are the most similar. The intra-subject, inter-resolutions links 

can be written as:

(1)

where  is the set of vertices at the original resolution that belong to the j-th supervertex at 

resolution level l and  is the number of vertices in .

In this setting, we can estimate a parcellation for a single subject Si that is consistent across 

resolutions using the multi-scale normalised cut approach [19]. For each level l, we aim at 

finding a K-way parcellation matrix Xl ∈ {0, 1}Nυ × K defined as:

(2)

The multi-scale parcellation and affinity matrices can then be constructed as follows:

(3)

Finally, we build a constraint matrix that encodes the inter-resolution links and ensures 

consistency of the recovered parcellation across resolutions:

(4)
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Here, INl is the Nl × Nl identity matrix and Nl is the number of supervertices at scale l. This 

matrix forces the obtained parcellation to be consistent across scales through the following 

constraint equation:

(5)

Optimisation of the multi-scale normalised cut criterion, subject to the inter-resolution 

constraint [19], yields a single subject parcellation that captures local connectivity 

information at different scales. Comparing the obtained parcellations within a group is 

however a very challenging task as there are no direct matches between parcels, and 

anatomical variability (as well as registration errors) can cause different subjects to have 

very different parcel boundaries. This issue can be addressed by performing a concurrent 

parcellation of all the subjects within the group to directly obtain correspondences between 

parcels.

2.3 Inter-Subject Connections

Spectral clustering offers the possibility to integrate different subjects in the same 

framework in a very natural manner. A group consistent parcellation can be obtained 

through a joint estimation of the parcellation matrix X across subjects. The groupwise 

parcellation, affinity and constraint matrices are defined as:

(6)

Matching parcellations are enforced by adding inter-subject connections encoded in the 

matrix R. Following [12], we only connect the coarsest resolution layers. This step is 

essential in our case as it relaxes the need for a precise registration in addition to allowing 

individual differences at the highest resolution.

Let us consider that all subjects have been registered to a common surface mesh. Similarly 

to the multi-scale parcellation approach, we seek a common parcellation across subjects by 

forcing supervertices in similar locations to belong to the same parcel. To this end, a 

supervertex from subject i is connected to a supervertex from subject j if they share the 

highest amount of overlapping surface vertices and have the strongest correlated 

connectivity profiles. We define the inter-subject edges between matching supervertices as 

follows:

(7)

where ρ(si(S1), sj(S2)) is the correlation between the connectivity profiles of the two 

different subjects’ supervertices and α is a weighting parameter. Correlation weighted edges 

enable accounting for differences in anatomy and possible errors in registration by 

decreasing the strength of the edges in non matching regions.
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2.4 Optimisation

The joint parcellation is eventually recovered by optimising the multi-scale normalised cut 

objective criterion [6] :

(8)

A near global-optimal solution to this NP-complete problem can be estimated in a two-step 

approach. First by finding the global optimum of the relaxed continuous problem Z*, and 

second by solving a discretisation problem to project this continuous optimum to the discrete 

space.

We define the normalised affinity matrix , and the projector matrix Q that 

integrates the constraint matrix:

(9)

We solve the continuous problem following the Rayleigh Ritz theorem [20], through 

computation and normalisation of the K largest eigenvectors of the matrix QPQ. This 

solution is then discretised through an iterative process [19] by seeking the closest solution 

to Z* that satisfies the constraints of the discrete problem.

3 Experimental Evaluation

Evaluation of cortical parcellations remains a very challenging task due to the lack of a 

ground truth parcellation. In this section, we evaluate the quality of our parcellations based 

on two main ideas: group consistency and fidelity to each individual’s connectivity matrix. 

We are seeking to observe similarities in connectivity within and across groups, while 

preserving individual variability.

3.1 Data Acquisition and Preprocessing

We evaluated our method on 100 different subjects (age range 22–35 years old) from the 

latest release of the Human Connectome Project (HCP)3. The HCP dMRI have been 

3Human Connectome Project Database, https://db.humanconnectome.org/
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acquired using a multi-shell approach, with three shells at b-values 1000, 2000, and 3000 

s/mm2 and 90 gradient directions per shell. The structural and diffusion data of all subjects 

have been preprocessed following the HCP’s minimum processing pipeline [9]. The cortical 

surfaces of all subjects are registered and represented as a triangular mesh of 32k vertices 

per hemisphere. Vertices corresponding to the medial wall are excluded from parcellations. 

The tractography matrix is obtained on the native mesh representing the gray-white matter 

interface using FSL’s bedpostX and probtrackX methods [3, 11] which estimate the fibres 

orientation at each voxel with a ball and stick model, and perform probabilistic tractography 

respectively. Following [11], we fitted three fibre compartments per voxel. 5000 streamlines 

were sampled from each of the mesh vertices. Each entry χ(v, q) counts the number of 

streamlines sampled from the surface vertex v that reach vertex q. The groupwise 

parcellation was performed on the left hemisphere of two disjoint groups of 50 randomly 

selected subjects with a base parcellation of 3 levels of 2000, 1000 and 500 supervertices 

and parameter μ heuristically set to 3.

3.2 Parameter Selection

The weighting parameter α has a large influence on the obtained parcellation and its 

consistency across subjects. We evaluate the quality of our parcellations and the impact of 

this parameter via an intra-subject information loss measure and a group consistency 

measure. Both measures are estimated on the connectivity graph rather than the parcellation 

itself. This is particularly relevant for group consistency, where the parcellations are 

expected to have different boundaries, but the merged connectivity graphs should be similar.

Our main objective is to obtain parcellations that summarise the structural connectivity maps 

faithfully. In other words, we seek to lose as little information as possible when merging the 

connectivity profiles of several vertices into one entity. The first measure we are computing 

aims to evaluate this information loss through the Kullback Leibler (KL) divergence. Each 

subject’s K × K merged connectivity matrix is converted into a Nυ × Nυ matrix  that 

should be as similar as possible to the Nυ × Nυ matrix χSi prior to clustering. The matrix 

 is constructed by assigning the same connectivity profile to all the vertices that belong 

to the same cluster. The KL divergence is then computed between the matrices χSi and , 

that are normalised to be probability mass functions. The idea is to evaluate how much 

information is lost when  is used to approximate χSi. Second, we evaluate group 

consistency using the sum of absolute differences (SAD). After parcellation, an average K × 

K connectivity matrix is constructed from all the subjects’ merged connectivity matrices. 

The deviation of each subject from the average is then evaluated by computing the SAD 

between the average matrix and the subject’s matrix. We compute those measures for a 

range of 50 to 250 parcels and the weighting parameter α ranging from 0.1 to 3. The 

obtained results are shown in Fig.2. Intuitively, the KL divergence should decrease when the 

number of parcels increases, as the averaging of connectivity profiles is reduced. 

Conversely, the SAD is expected to increase with the number of parcels, as more individual 

information is maintained. Both measures show a rapid decrease, then stabilise when α is 

increased. This can be explained by the fact that when α is low enough, the parcellations are 
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not constrained to be in accordance. Hence, the K clusters will be spread across subjects, 

leading to different parcellations and different numbers of parcels. However, both SAD and 

KL tend to increase slowly after reaching a minimum as constraints that are too strong can 

force identical parcellations, while isolated supervertices start to appear. Our main goal is to 

obtain parcellations that are as faithful as possible to the subjects connectivity profiles, we 

therefore select the value of α that minimises the KL divergence. The two groups we tested 

our method on show the same behaviour, and require α to be increased with the number of 

parcels (from 0.1 to 0.5 in our setting). Fig.4 shows examples of parcellations obtained with 

the optimal value of α for 160 parcels. We can observe a strong consistency, but also the 

different shapes and boundaries of the parcels across subjects.

3.3 Method Evaluation

We have compared the proposed groupwise parcellation method to (a) multi-scale individual 

spectral clustering (described in sec.2.2), (b) hierarchical clustering of the finest supervertex 

resolution level, (c) anatomical parcellations from the Destrieux atlas [8], and (d) Poisson 

disk sampling random parcellations. We computed the KL divergence and SAD for the five 

different methods for 75 parcels (anatomical parcellation granularity). In the absence of 

existing matching across the subject’s clusterings, the clusters that had the highest overlap 

were matched. This matching is not optimal, but highlights one of the main drawbacks of 

individual parcellations. Results are shown in Fig.3. While it is expected that a groupwise 

parcellation would not perform as well as individual parcellations in terms of information 

loss, the increase in KL remains very limited and faithful to the data in comparison with 

random or anatomical parcellation. The SAD score is significantly ouperforming all 

methods.

3.4 Group Comparisons

Finally, we compared the consistency across our two groups’ parcellations. Given the 

sizeable data-set, both groups should reflect common connectivity properties and be 

essentially free of inter-subject variability. The average parcellations obtained through 

majority voting are compared by computing the Dice score between all highest matching 

parcels. We obtain a mean Dice score of 72 ± 5 % across all numbers of parcels. It is as 

expected lower than the average intra group pairwise dice score of 79 ± 7% but significantly 

outperforms the average pairwise dice scores between independent parcellations (57 ± 3%). 

The strong similarity between the two groups’ parcellations is shown in Fig.5. We also 

computed the SAD score between average connectivity profiles after matching the parcels. 

Its mean value of 0.20 ± 0.05 is on par with intra group SAD scores (individual vs. average 

connectivity matrices, mean value 0.16 ± 0.07) and outperforms the SAD scores between 

individual parcellations (mean 0.48 ± 0.1). Inter-group comparisons for other methods are 

not performed here as the high within group variability does not allow the construction of a 

meaningful average parcellation.

4 Discussion

We presented a groupwise multi-scale parcellation method of the brain’s cortical surface 

that is driven by structural connectivity. Our proposed spectral clustering approach allows 
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the recovery of consistent parcellations across subjects and scales without averaging raw 

connectivity profiles. It shows great consistency across and within groups as well as limited 

information loss with respect to the raw connectivity matrix. The proposed method paves the 

way for groupwise connectome analysis. First and foremost, this could enable idenfication 

of a connectome backbone, i.e. connections that are present across populations. Specific 

groups studies could consequently be considered (healthy vs. disease, young vs. ageing for 

instance) in order to identify possible connectivity disruptions or global differences. The 

obtained parcellations and networks could also be compared to fMRI based parcellations, or 

correlated with activation regions from fMRI to study the relationship between structure and 

function. Several extensions and improvements of the method could be considered. 

Incorporating a different base parcellation in our framework is easy, since no assumption is 

made on the method adopted. The consistency across scales would be more natural through 

a hierarchical approach where the different scales have matching boundaries. Despite 

correlation weighted inter-subject links, the method relies strongly on the registration across 

subjects that can be imperfect. Another interesting extension of the method would be to 

incorporate a diffusion driven registration task in an iterative fashion, where registration and 

parcellation alternate.
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Fig. 1. 
Illustration of the proposed method. Each subject Si is associated with a connectivity matrix 

χSi that drives the construction of a multi-scale base parcellation. Intra-subject edges 

(between base parcellation resolutions) and intersubject edges (between all pairs of subjects 

at the coarsest parcellation resolution) are built to allow a common spectral decomposition 

of the affinity matrix (connectivity profiles correlation).
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Fig. 2. 
Evolution of the average KL divergence (a) and the SAD (b) across subjects depending on 

the value of the parameter α and the number of parcels.
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Fig. 3. 
Boxplot comparison of the proposed method to anatomical, random, hierarchical and 

spectral parcellations for the KL divergence (a) and SAD (b).
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Fig. 4. 
Example parcellations (160 parcels) of subjects within the same group.
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Fig. 5. 
Average parcellations for 70 (a,b,c) and 130 parcels (e,f,g). (a,e) and (b,f) show parcellations 

from two different groups of normal subjects, while (c,g) shows the disagreement between 

both groups. Each group contains 50 subjects. The average 75 clusters anatomical 

parcellation (d) is shown as comparison to our proposed 70 clusters parcellation.
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