Skip to main content

Prime Model with No Degree of Autostability Relative to Strong Constructivizations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9136))

Abstract

We build a decidable structure \(\mathcal {M}\) such that \(\mathcal {M}\) is a prime model of the theory \(Th(\mathcal {M})\) and \(\mathcal {M}\) has no degree of autostability relative to strong constructivizations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans. Roy. Soc. London. Ser. A. 248, 407–432 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  2. Mal’tsev, A.I.: Constructive algebras. I. Russ. Math. Surv. 16, 77–129 (1961)

    Article  MATH  Google Scholar 

  3. Mal’tsev, A.I.: On recursive abelian groups. Sov. Math. Dokl. 32, 1431–1434 (1962)

    MATH  Google Scholar 

  4. Fokina, E.B., Kalimullin, I., Miller, R.: Degrees of categoricity of computable structures. Arch. Math. Logic. 49, 51–67 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Csima, B.F., Franklin, J.N.Y., Shore, R.A.: Degrees of categoricity and the hyperarithmetic hierarchy. Notre Dame J. Formal Logic. 54, 215–231 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bazhenov, N.A.: Degrees of categoricity for superatomic Boolean algebras. Algebra Logic. 52, 179–187 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Anderson, B.A., Csima, B.F.: Degrees that are not degrees of categoricity. Notre Dame J. Formal Logic. (to appear)

    Google Scholar 

  8. Fokina, E., Frolov, A., Kalimullin, I.: Categoricity spectra for rigid structures. Notre Dame J. Formal Logic. (to appear)

    Google Scholar 

  9. Goncharov, S.S.: Degrees of autostability relative to strong constructivizations. Proc. Steklov Inst. Math. 274, 105–115 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Miller, R.: \(\mathbf{d}\)-computable categoricity for algebraic fields. J. Symb. Log. 74, 1325–1351 (2009)

    Article  MATH  Google Scholar 

  11. Fokina, E.B., Harizanov, V., Melnikov, A.: Computable model theory. In: Downey, R. (ed.) Turing’s Legacy: Developments from Turing Ideas in Logic. Lecture Notes Logic, vol. 42, pp. 124–194. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  12. Bazhenov, N.A.: Autostability spectra for Boolean algebras. Algebra Logic. 53, 502–505 (2014)

    Article  Google Scholar 

  13. Chang, C.C., Keisler, H.J.: Model Theory. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  14. Jockusch, C.G., Soare, R.I.: \(\Pi ^0_1\) classes and degrees of theories. Trans. Amer. Math. Soc. 173, 33–56 (1972)

    MATH  MathSciNet  Google Scholar 

  15. Cenzer, D.: \(\Pi ^0_1\) classes in computability theory. In: Griffor, E.R. (ed.) Handbook of Computability Theory. Studies Logic Foundations Mathematics, vol. 140, pp. 37–85. Elsevier Science B.V., Amsterdam (1999)

    Google Scholar 

  16. Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hierarchy. Elsevier Science B.V, Amsterdam (2000)

    MATH  Google Scholar 

  17. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Kluwer Academic/Plenum Publishers, New York (2000)

    Book  MATH  Google Scholar 

  18. Goncharov, S.S.: Countable Boolean Algebras and Decidability. Consultants Bureau, New York (1997)

    MATH  Google Scholar 

  19. Ershov, Y.L.: Decidability of the elementary theory of distributive lattices with relative complements and the theory of filters. Algebra Logic. 3, 17–38 (1964)

    MATH  Google Scholar 

  20. Steiner, R.M.: Effective algebraicity. Arch. Math. Logic. 52, 91–112 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Sergey Goncharov and Svetlana Aleksandrova for fruitful discussions on the subject. This work was supported by RFBR (grant 14-01-00376), and by the Grants Council (under RF President) for State Aid of Leading Scientific Schools (grant NSh-860.2014.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Bazhenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bazhenov, N. (2015). Prime Model with No Degree of Autostability Relative to Strong Constructivizations. In: Beckmann, A., Mitrana, V., Soskova, M. (eds) Evolving Computability. CiE 2015. Lecture Notes in Computer Science(), vol 9136. Springer, Cham. https://doi.org/10.1007/978-3-319-20028-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20028-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20027-9

  • Online ISBN: 978-3-319-20028-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics