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Abstract

Although recent scientific output focuses on multiple shortest-path problem definitions for road
networks, none of the existing solutions does efficiently answer all different types of SP queries. This
work proposes SALT, a novel framework that not only efficiently answers SP related queries but also
k-nearest neighbor queries not handled by previous approaches. Our solution offers all the benefits
needed for practical use-cases, including excellent query performance and very short preprocessing
times, thus making it also a viable option for dynamic road networks, i.e., edge weights changing
frequently due to traffic updates. The proposed SALT framework is a deployable software solution
capturing a range of network-related query problems under one “algorithmic hood”.

1 Introduction
During the last decades, recent scientific literature has focused on researching efficient methods for
shortest-path (SP) related problems. The related research has evolved so rapidly that even the recent
overviews of [7, 2] had to be updated in subsequent publications [1]. Unfortunately, despite this
plethora of efficient algorithms only few of them may actually be used in a practical application context. The
requirements to such a potent approach should be (i) preprocessing time of few seconds for continental
road networks and (ii) SP query times of a few ms. Currently, only two candidates fit these strict
requirements. The graph-separator approach of Customizable Route Planning (CRP) [5, 9] and the recent
adaptation [14] of the ALT [17] algorithm. Due to these specific properties, said algorithms are used in
commercial solutions, such as Bing Maps and SimpleFleet [12], for their live traffic-based routing.

Unfortunately, most of the developed algorithms are tuned to solving a specific problem efficiently,
but are rather inefficient when used in a different context. Contrarily, engineering a framework that
efficiently solves multiple shortest-path problems, would not only increase the commercial potential of
such a solution but would also be the first step towards the direction of a grand unified SP toolkit. To this
purpose, Efentakis et al. [15] extended graph-separators and proposed the novel set of GRASP (Graph
separators, RAnge, Shortest Path) algorithms that solve most variants of the single-source shortest-
path problems on road networks, including one-to-all (finding SP distances from a source vertex s to
all other graph vertices), one-to-many (computing the SP distances between the source vertex s and
all vertices of a set of targets T ) and range queries (find all nodes reachable from s within a given
timespan / distance). GRASP requires minimal preprocessing time and provides excellent parallel
query performance needed in the context of practical applications and respective commercial solutions.

Another fundamental problem frequently encountered in location-based services is the k-NN
query, i.e., given a query location and a set of objects on the road network, the k-NN search finds
the k-nearest objects to the query location. Unfortunately, even recent attempts, such as G-tree [27],
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are not scalable with respect to the network size, since they require preprocessing of several hours for
continental road networks. In addition, for a large number of randomly distributed objects, an efficient
Dijkstra implementation could answer k-NN queries (for small values of k) by settling a few hundreds
nodes and requiring < 1ms. Moreover, most existing approaches (contrarily to Dijkstra) require a target-
selection phase, i.e., they need to mark the objects location within the underlying index. This phase takes
a few seconds, hence having limited appeal for applications involving moving objects (e.g., vehicles).
Therefore, it only makes sense to use a complex (as in non-Dijkstra) k-NN processing framework in
cases of either rather “small” numbers of objects or objects following skewed distributions (e.g., POIs
located near the city center), i.e., for cases in which Dijkstra does not perform well.

Putting everything together, the ambition of this work is to provide a unified algorithmic solution
that may be used in a dynamic road network context by having very short preprocessing times and
competitive query times, while covering a wide range of shortest-path and network search problems, such
as (i) single-pair, (ii) one-to-all, (iii) one-to-many, (iv) range and (v) k-NN queries. Specifically, we aim
at combining the fragmented approaches related to the various shortest-path problem definitions and
instead propose a unified framework that tackles all of them. Our proposed SALT (graph Separators
+ ALT) framework requires only seconds for preprocessing continental road networks and provides
excellent query performance for a wide range of problems. We will show that SALT is (i) 3 − 4× faster
for point-to-point queries when compared to existing methods of similar preprocessing times, (ii) it
answers one-to-all, one-to-many and range queries with comparable performance to state-of-the-art
approaches, and most importantly, (iii) it may also answer k-NN queries in < 1ms, for both, static or
moving objects. As such, our SALT framework could be a swiss-army-knife for tackling all shortest-path
problem variants, making it a serious contender for use in commercial applications.

The outline of this work is as follows. Section 2 describes relevant previous related work. Section
3 describes our novel SALT framework and algorithms. Experiments establishing the benefits of our
approach are provided in Section 4. Finally, Section 5 gives conclusions and directions for future work.

2 Related work
Throughout this work, we are dealing with directed weighted graphs G(V, E,w), where V is the set of
vertices, E ⊆ VxV are the arcs of the graph and w is a positive weight function E → R+. The reverse
graph G = (V, E) is the graph obtained from G by substituting each arc (u, v) ∈ E by (v, u).

A partition of V is a family of sets C = {c0, c1, . . . cM}, such that each node u ∈ V is contained in
exactly one set ci. An element of a partition is called a cell. A multilevel partition of V is a family
of partitions {C0,C1, . . .CL} where ` denotes the level of a partition C`. Similar to [5], level 0 refers to
the original graph, L is the highest partition level and in this work we use nested multilevel partitions,
i.e., for each ` < L and each cell c`i there exists a unique cell c`+1

j (called the supercell of c`i ) with c`i ⊆ c`+1
j .

Accordingly, c`i is a subcell of c`+1
j . In this notation, c`(v) is the cell containing the vertex v on level `.

Accordingly, the number of cells of the partition C` is denoted as |C`|. For a boundary arc on level `,
the tail and head vertices are located in different level-` cells; a boundary vertex on level ` is connected
with at least one vertex in another level-` cell. Note that for nested multilevel partitions, a boundary
vertex/arc at level ` is also a boundary vertex/arc for all levels below.

In k-NN queries, given a query location s and a set of objects O, the k-NN search problem finds
k-nearest objects to the query location. Similar to [27], we assume that both the query location and
the objects are located at vertices, which is a logical compromise, since (i) for static objects we can add
new vertices at object locations or (ii) in the case of moving objects we can assign objects to vertices
heuristically, e.g., placing them on their nearest vertex.



2.1 Landmarks and the ALT algorithm. In the ALT algorithm [17], a small set of vertices called
landmarks is chosen. Then, during preprocessing, we precompute distances to and from every
landmark for each graph vertex. Given a set S⊆V of landmarks and distances d(Li, v), d(v, Li) for all
vertices v∈V and landmarks Li∈S , the following triangle inequalities hold: d(u, v)+d(v, Li) ≥ d(u, Li) and
d(Li, u)+d(u, v) ≥ d(Li, v) . Hence, the function π f = maxLimax{d(u, Li)− d(v, Li), d(Li, v)− d(Li, u)} provides
a lower-bound for the graph distance d(u, v). Later works [24] showed that landmarks may also be
used for providing upper-bounds on the graph distance between any two vertices. Thus, landmarks
provide a fast and efficient way to approximate graph distances, according to Eq. 2.1 and 2.2.

d(u, v) ≥ maxLimax{d(u,Li) − d(v,Li), d(Li,v) − d(Li,u)} (2.1)
d(u, v) ≤ minLi(d(u, Li) + d(Li, v)) (2.2)

ALT combines the classic A∗ algorithm [18] with the aforementioned lower-bounds. For bidirec-
tional search, ALT uses the average potential function [19] defined as p f (v) = (π f (v) − πr(v))/2 for the
forward and pr(v) = (πr(v) − π f (v))/2 = −p f (v) for the backward search.

2.2 Graph separators In Graph Separator (GS) methods, such as CRP [5, 9], a partition C of the graph
is computed. Then, during preprocessing, we build an overlay graph H containing all boundary vertices
and arcs of G. It also contains a clique for each cell c: for every pair (u, v) of boundary vertices in c, a
clique arc (u, v) is created whose cost is the same as the shortest path (restricted to the inner edges of c)
between u and v. For a SP query between s and t, the Dijkstra algorithm must be run on the graph
consisting of the union of H, c0(s) and c0(t). To further accelerate queries, we may use multiple levels
of overlay graphs. Since each clique is calculated by using only the inner edges of c, GS preprocessing
may be easily parallelized. Moreover, overlay graphs of higher level partitions may be computed by
using the overlay graphs of lower levels. By using those two optimizations, CRP is the most efficient
SPSP algorithm in terms of preprocessing time (requiring few seconds for continental road networks)
and is thus suitable for dynamic road networks.

2.3 Single-source shortest-path queries Recently, Efentakis et al. [15] expanded graph separators
and proposed GRASP, a novel set of algorithms for handling all variants of single-source shortest-path
queries, including one-to-all, one-to-many and range queries. All three algorithms, namely GRASP
(one-to-all), isoGRASP (range) and reGRASP (one-to-many) use the exact same data structures and
share all the advantages of graph-separator methods, such as very short preprocessing times and
excellent parallel query performance. Unfortunately, parallel reGRASP requires a few ms for one-to-
many queries on continental road networks and hence is not fast enough for handling k-NN queries.

2.4 k-NN queries There are many works on k-NN queries for static objects on road networks.
Unfortunately, even latest attempts, such as G-tree [27] cannot scale for continental road networks,
requiring 16.8 hours of preprocessing for the full USA network. Moreover, previous index-based approaches
require a target selection phase to index which tree-nodes contain objects (a process requiring few
seconds) and hence, they cannot be applied in case of moving objects. Thus, all previous solutions
are quite unsuitable for practical applications and dynamic road networks.

There is also significant work around k-NN queries for moving objects on road networks. Still,
most of those approaches are either disk-based [26], have not been tested on continental road
networks [20, 23, 26] and cannot address dynamic live-traffic road networks. Recently, CRP was also
expanded [10] to handle k-NN queries. Unfortunately, it shares the limitations of previous methods,
since (i) it also requires a target selection phase and therefore cannot be applied to moving objects and
(ii) it may only perform well for objects near the query location (otherwise the whole upper level of the
overlay graph must be traversed). Hence, this solution is also far from optimal.



(a) A sample graph G.
|V |= 15, L=2, |CL |=2

(b) Building the level-
1 overlay graph

(c) Building the level-
2 overlay graph

(d) Downward arcs
and the GGS ↓ graph

Figure 1: SALT’s GS customization phase. Building the overlay graph H and the GGS ↓ graph

3 The SALT framework
The main contribution of this work is to propose SALT (graph Separators + ALT algorithm), a
unified framework for answering point-to-point, single-source (one-to-all, one-to-many and range)
and especially k-NN queries which are not handled efficiently by existing approaches. The main
advantage of SALT is, that the exact same data structures may service all the different type of SP
queries and hence, SALT may be easily integrated into commercial, real-world applications. What
follows is a detailed discussion of the SALT framework.

3.1 Preprocessing SALT’s preprocessing consists of two distinct phases, (i) the graph-separator (GS)
phase and (ii) the landmarks preprocessing phase.

The GS phase of SALT mimics the preprocessing of GRASP [15] (see Fig. 1). During this phase,
we use the Kafpaa/Buffoon [25] partitioning tool to create nested multilevel partitions of the road
network graph in a top-down fashion. This initial partitioning phase is metric independent and needs to
be executed only once, i.e., even in the case of arc-weights changes or for different metrics. Following
partitioning, the customization stage builds the overlay graph H containing all boundary vertices and
arcs of G. The graph H also contains a clique for each cell c: for every pair (u, v) of boundary vertices
in c, we create a shortcut arc (u, v) whose cost is the same as the shortest-path (restricted to inner edges
of c) between u and v (see Fig. 1(b), 1(c)). Similar to [15], we also calculate the SP distances between all
border vertices of level ` and all vertices of level `−1 within each cell c` (see Fig. 1(d)). To differentiate
between the two kinds of arcs computed, we will denote as (i) clique arcs the added overlay arcs that
connect border vertices of the same level ` and (ii) downward arcs of level ` the vertices connecting
different levels, i.e., ` and `−1. For added efficiency, downward arcs are stored as a separate graph,
referred to, as GGS ↓. Both types of arcs are computed bottom-up and starting at level one. To process a
cell, the GS customization stage for SALT executes a Dijkstra algorithm from each boundary vertex of
the cell. We also apply the arc-reduction optimization of [16], which reports only distances of boundary
vertices that are direct descendants of the root of each executed Dijkstra algorithm.

Although SALT’s GS preprocessing phase is conceptually similar to GRASP, there are two major
differences. (i) For accelerating SALT’s preprocessing, H and GGS ↓ have the same number of levels
(L = 6 in our experiments) with |CL| = 16 (cf. the original GRASP paper with |CL| = 128 and L = 16).
Using a smaller number of cells at the upper level of the cell hierarchy slightly lowers one-to-all query
parallel performance, but accelerates point-to-point queries and reduces preprocessing time. Hence, it is a
very logical compromise, since our focus is on increased versatility. (ii) Moreover, we have to repeat
SALT’s GS customization stage twice, one for the forward and one for the reverse graph. This is
necessary for the landmarks phase of SALT, but it also allows to answer, both, forward and reverse
single-source queries. Thus, at the end of SALT’s GS preprocessing we have built two versions of the
overlay graphs, H and GGS ↓, one for forward and one for reverse graph queries, respectively.



The landmarks preprocessing phase for SALT extends the preprocessing proposed by [14], which
optimized and tailored the ALT algorithm for use with dynamic road networks. Landmarks are
selected by the partition - corners landmarks selection strategy, in which the we use the cells created
by Kafpaa and from each cell we select the four corner-most vertices as landmarks. For SALT, we
accelerate the computation of distances of all graph vertices from and to landmarks by executing two
sequential GRASP algorithms (forward and reverse) instead of using plain Dijkstra (as in all previous
approaches). Moreover, we may perform those 2×|S | GRASP algorithms in parallel. By using these
optimizations, the landmarks preprocessing phase of SALT never takes more than 4s for 24 landmarks
and is therefore at least 6× faster than any existing work.

Conclusively, at the end of the preprocessing stage of SALT, we have built the overlay graphs H
and GGS ↓ for both forward and reverse searches and calculated distances for all vertices from and to
the selected landmarks. This is all the information required for answering point-to-point, single-source
and k-NN queries. For dynamic road networks, we only need to repeat the GS customization stage and
the computation of distances of all vertices from and to the landmarks. Both these phases require less
than 19s for the benchmark road networks we used. This makes SALT suitable for dynamic scenarios.

3.2 Single-pair shortest-path queries Using the SALT preprocessing data, we can accelerate point-
to-point shortest-path queries by combining our custom CRP (with arc-reduction) with the goal-
direction technique of the ALT algorithm. In CRP, to perform a SP query between s and t, Dijkstra’s
algorithm must be run on the graph consisting of the union of H, c0(s) and c0(t). The difference in SALT
is that, instead of Dijkstra, we use the ALT algorithm on the graph consisting of the union of H, c0(s)
and c0(t). Note that both ALT and CRP may also be used in, either, a unidirectional or a bidirectional
setting. A similar combination of CALT [2] and CRP was unofficially introduced in [5], which uses
the landmark derived lower-bounds only on the upper-level of the graph-separator overlay graph.
Therefore, local searches could not be accelerated. Local search is crucial for k-NN queries, since the
k-NN results for small values of k are usually located close to the query location. In contrast, our
SALT-p2p algorithm, combining pure ALT and SIMD instructions for lower bound calculations and our
custom CRP, is going to be significantly more efficient than stand-alone ALT or CRP. In addition, since
both methods are extremely robust to the metric used [2, 5], their combination will provide excellent
performance for both travel times and travel distances.

THEOREM 3.1. The SALT-p2p algorithm for SPSP queries is correct.

Proof. Since the SALT-p2p algorithm for SPSP queries combines CRP and ALT, which both provide
optimal results then the SALT-p2p algorithm also provides correct results.

3.3 k-NN queries SALT’s preprocessing data can be used to answer k-NN queries. Instead of
initiating a k-NN search from a query location s to objects O, we start a search from all the objects
at the same time to the query location in the reverse graph. Hence, we take advantage of, both, GS and
ALT acceleration to guide the search towards the query location. The SALT-kNN algorithm’s query
phase may be divided in two independent stages. The Pruning phase excludes objects that cannot
possibly belong to the k-NN set by using the upper and lower-bounds provided by the landmarks
preprocessing data. The Main phase executes a unidirectional SALT-p2p algorithm in the reverse graph
from all remaining objects at the same time to the query location until the query location is settled.
Now we have found the first nearest neighbor. This process has to be repeated another k−1 times until
all k-NN are discovered. The algorithm is detailed in the following.

Pruning phase. To prune objects that are too far away from the query location and thus cannot
belong to the k-nearest neighbors set, we (i) calculate the k-th lowest upper-bound of graph distances



between the query location and the objects (cf. Equation 2.2) and (ii) pruning/exclude objects whose
distance lower-bounds between them and the query location (cf. Equation 2.1) exceed the k-th lowest
upper-bound. To the best of our knowledge, this is the first work to utilize upper and lower landmark
bounds in the context of k-NN queries.

THEOREM 3.2. The pruning phase of the SALT-kNN algorithm is correct.

Proof. When we calculate the k-th lowest upper-bound of distances between the query location and
the objects, we can guarantee that there are at least k-neighbours within this distance from the query
location. So, any object located farther than that (as provided by the landmarks provided lower-
bounds) may be safely pruned.

To accelerate the process of computing the k-th lowest upper-bound between the query location
and the objects we can use a bounded max-heap Q that only stores k-upper-bounds and procedure
GETKTHLOWESTUPPERBOUND:

GETKTHLOWESTUPPERBOUND(s,O)

1 Q = emptyMaxHeap
2 m = 0
3 for each ob j in O
4 if m < k
5 Q.push(upperBoundDist(s, ob j))
6 m = m + 1
7 elseif (upperBoundDist(s, ob j) < Q.top())
8 Extract − max(Q)
9 Q.push(upperBoundDist(s, ob j))

10 return Extract − max(Q)

PRUNINGPHASE(s,O)

1 Osmall = {}

2 kthUpperBound = getKthLowestU pperBound(s,O)
3 for each ob j in O
4 if lowerBoundDist(s, obj) ≤ kthUpperBound
5 Osmall.add(ob j)
6 return Osmall

Since the bounded max-heap Q only stores k-upper-bound distances, we only need to compare
the next objects’s upper-bound with the top of the heap. If we have found a lower upper-bound, we
remove the top of the heap and add the new upper-bound to Q. At the end of the procedure, the top of
the max-heap is the k-th lowest upper bound of distances between the query location and the objects.
The pruning phase is now implemented by procedure PRUNINGPHASE.

At the end of the pruning phase, instead of using the objects in O, we only need to check for the k-
nearest neighbors within the objects in Osmall. Our experimentation has shown that the pruning phase
is very effective, since it efficiently prunes more than 60% of the total number of objects in O.

MAINPHASE(s,Osmall, k,G)

1 for i = 0 to k−1
2 T ′ =new vertex
3 for each ob j ∈ Osmall

4 Connect T ′ to ob j with zero-weight edges
5 (iNN, iNNdist) = S ALT−p2p(T ′,s,G)
6 Osmall = Osmall − iNN

Main phase. Following the pruning phase,
to find the first nearest neighbor we start by
performing a search simultaneously from all ob-
jects in Osmall to the query location in the reverse
graph. To do so, we use the idea of [22]. We
add a new vertex T ′ connected to all objects in
Osmall using zero-weight edges and then perform
a unidirectional SALT-p2p algorithm from T ′ to

the query location s in the reverse graph (see Figure 2). At the end of this process, we have found
the first nearest neighbor of query location s. Then we eliminate this vertex from Osmall and repeat the
process for another k−1 iterations to retrieve the full k-NN set (see procedure MAINPHASE).

THEOREM 3.3. The main phase of the SALT-kNN algorithm is correct.

Proof. As [22] has shown, by adding a new vertex T ′ connected to a set of vertices and then running
any correct shortest-path algorithm from T ′ to a destination vertex, we can find the minimum shortest-



path distance between the vertices set and the destination. As a result, since the SALT-p2p algorithm
is correct and this algorithm is run in the reverse graph, at the end of the first iteration we have found
the shortest-path distance between the query location s and one of the objects in Osmall, which is the
first nearest-neighbour. Since, we eliminate this vertex from Osmall and repeat this correct process for
another k−1 times, the main phase of the SALT-kNN algorithm is correct.

To retrieve not only the shortest-path distance between the query location s and the objects in
Osmall, but also the actual k-NN vertices, we need to maintain for each labeled vertex a reference that
points to the originating vertex in the objects’ set Osmall. Thus, when we extract the query location s
from the priority queue and terminate the SALT-p2p algorithm at the i-th iteration, we know not only
the i-th shortest-path distance but the i-th nearest neighbor as well. Moreover for each object o in
Osmall, we need to store the cell ID c1(o) of the cell this object belongs at the lowest level of the graph
separator hierarchy, so to be able to traverse the overlay graph H during each iteration of the SALT-p2p
algorithm. Note it is sufficient to store only the c1(o), since cell IDs for higher levels may be calculated
from that.

Figure 2: The i-th iteration of the
SALT-kNN algorithm

Although the SALT-k-NN algorithm will be very fast for
retrieving the first NN result object, it will become progressively
slower when retrieving the additional k − 1 NN vertices, since
at each iteration, the SALT-p2p algorithm will start from scratch.
To remedy this, at the beginning of the i-th iteration, we reload
the corresponding priority queue with all vertices labeled during
the i−1 iteration except those originating from the previous NN
vertex found, since most of those labeled vertices were already

assigned correct SP distances. For previously labeled vertices of which the SP distance can be
improved, by using a min-heap priority queue (as all Dijkstra variants), the i-th iteration of the
algorithm will further assign correct SP distances. This optimization significantly improves query
times and still ensures correctness of the SALT-k-NN algorithm.

3.4 Single-source shortest-path queries Although our main contributions are the SALT-p2p and the
SALT-kNN algorithms for handling SPSP and k-NN queries, the SALT framework may still be used
for other types of single-source shortest-path (SSSP) queries, including one-to-all, one-to-many and
range queries by using the GRASP, reGRASP and isoGRASP algorithms presented in [15]. The major
improvement in SALT is that by tweaking the number of cell levels (L = 6) and the number of cells at
the upper cell level (|CL| = 16), we may efficiently answer both forward and reverse SSSP queries without
increasing the preprocessing time significantly. As shown in previous works [13], this type of flexibility
is extremely important for a wide range of geomarketing applications.

3.5 SALT Tuning Although SALT correctness for both p2p and k-NN queries was rather straightfor-
ward to prove, we describe some of the necessary optimizations for an efficient SALT implementation.
These optimizations include the most optimal schema for storing shortest-path distances of graph ver-
tices from and to the landmarks, the use of SIMD instructions during the query phase of the SALT-kNN
and SALT-p2p algorithms and how we assign IDs to vertices for fewer cache misses and acceleration
of SALT’s preprocessing and query phases. In detail:

Landmark Distance Records. In [14] landmark distances were stored in a 32-bit vector of size
2·|S |·|V |. The distance of node with nodeID i ∈ [0, |V |−1] from landmark number j ∈ [0, |S |−1] was
stored at position 2·|S |·i+2 j and the distance of node i to the landmark j was stored in the next position
(2·|S |·i+2 j+1). Moreover, landmark distances from landmarks to nodes were stored negated (as negatives),
since this is how they are used for estimating lower-bounds. Although this storage schema facilitates



fast calculation of lower-bounds, it is not optimal for calculating upper-bounds, as needed during the
pruning phase of the SALT-kNN algorithm. To calculate the upper-bound of the distance between the
query location s and any object in O (cf. Equation 2.2) we only need the distances from the object to
the landmarks and the distances from the landmarks to the query location s. Thus, it is better to store
landmark distances from all landmarks on consecutive memory locations per vertex (and negated as
before) and then the distances to all landmarks. Hence, we use again a 32-bit vector of size 2·|S |·|V | for
storing the landmark distances, but now the distance of vertex i from landmark j is stored at position
2·|S |·i+ j and the distance of node i to the landmark j is stored in the position (2·|S |·i+ |S |+ j). With this
optimization, to calculate the upper-bounds, we access |S | consecutive memory locations per object
instead of 2|S |. Also, since landmark distances to vertices are stored negated, instead of addition, we
use subtraction during the upper-bound calculation.

Node Reordering. Similar to previous works [3, 15], assigning smaller IDs to border vertices of
higher levels and breaking ties within the same level by cell, has shown to improve performance for
both SALT-p2p and SALT-k-NN algorithms. As a result, this is also the node-ordering of choice for our
SALT framework.

SIMD Instructions. Current x86-CPUs have special 128-bit SSE registers that hold four 32-bit
integers and allow basic operations, such as addition, minimum, and maximum to be executed in
parallel. Efentakis et al. [14] have utilized those 128-bit SSE registers to significantly accelerate the
computation of the landmarks based lower-bounds. We further expand this optimization by applying
the above method to the efficient calculation of upper-bounds as well. Consequently, the pruning
phase of the SALT-kNN algorithm requires significantly less than 1ms. To the best of our knowledge,
this work is the first to utilize SIMD instructions within the context of k-NN queries.

3.6 Summary and Expectations Although our experimentation (see Sec. 4) will show that SALT is
very efficient for all types of shortest-path queries, the main phase of SALT-k-NN could be performed
with any valid unidirectional SP algorithm. The use of SALT-p2p has multiple advantages (i) Its
constituent algorithms, ALT and CRP, are the only algorithms with fast enough preprocessing times to
be used for the case of dynamic road networks. SALT-p2p “inherits” this important property necessary
for providing the optimal algorithmic foundation for live traffic-based services. (ii) The pruning phase
of SALT-k-NN is very crucial for a fast implementation. Only the landmarks preprocessing data could
provide this type of functionality that could potentially replace R-tree based approaches in other location-
based services as well. (iii) SALT-p2p is very robust with respect to the metric used. In fact, its query
performance is slightly better for travel distances, the metric for which most hierarchical SP approaches
perform badly. This is an important property for k-NN queries identifying Points-Of-Interest based
on walking distance. (iv) Our results show that unidirectional SALT-p2p actually provides better
performance than bidirectional SALT-p2p. This is an advantage over existing hierarchical methods,
since most can only be used in a bidirectional setting. (v) Last but not least, the main phase of the
SALT-k-NN algorithm initially expands vertices closer to the query location. As such, “unattractive”
objects furthest from the query location (as estimated by the lower-bounds) that cannot be excluded
during the pruning phase do not slow down SALT-k-NN queries. In fact, our experimentation will
show that finding the first nearest neighbor is almost as fast as a plain SALT-p2p query. Hence, it is
hard to provide a significantly better theoretical solution, at least using standard SP techniques, with
fast enough preprocessing times suitable for dynamic road networks.



4 Experiments
The experimentation that follows, assesses the performance of the SALT framework and the respective
SALT-p2p and SALT-kNN algorithms. For completeness, we also report the performance of sequential
and parallel GRASP [15] algorithm within the SALT framework for single-source (one-to-all) queries.

Experiments were performed on a workstation with a four-core i7-4771 processor clocked at
3.5GHz with 32 GB of RAM, running Ubuntu 14.04 64bit. Our code was written in C++ and compiled
with GCC 4.8 (and OpenMP). Query times are executed on one core and augmented with SSE
instructions. We used the European road network with 18M nodes / 42M arcs and the full USA road
network with 24M nodes / 58M arcs [11] and experimented with both travel times and travel distances.

For partitioning the graph into nested-multilevel partitions, similarly to [15], we used Buf-
foon / KaFFPa [25] in a top-down approach. We use a partitioning setup similar to the best recorded
CRP results of [4] with total number of overlay levels set to L=6 and |C1|=1048576, |C2|=65536,
|C3|=8192, |C4|=1024, |C5|=128 and |C6|=16. We also used 24 landmarks, since adding more landmarks
did not offer significant performance benefits for either SALT-p2p or SALT-kNN algorithms.

Table 1: SALT, GRASP and G-tree preprocessing times
Preprocessing time (s)

Travel Times (TT) Travel Distances (TD)
EUR USA EUR USA

SALT (GS custom. phase) 11.1 (5.5) 14.82 (7.4) 11.3 (5.7) 15.4 (7.7)
SALT (Landmarks phase) 2.6 (1.3) 3.6 (1.8) 2.7 (1.4) 3.6 (1.8)

SALT (Total) 13.7 (6.9) 18.4 (9.2) 14.0 (7.0) 18.9 (9.5)
GRASP (Orig) 8 (8) 12 (12) 10 (10) 13 (13)

G-tree (198,479) (5,736) (25,918) (5,001)

4.1 Preprocessing In this section we
will report the preprocessing times for
SALT, in comparison to the original
GRASP version (as reported on [15])
and G-tree [27] (G-tree source code was
kindly provided by its authors). Note,
that contrary to the SALT framework
that may simultaneously answer single-

pair, single-source (one-to-all, one-to-many, range) and k-NN queries, GRASP only focuses on single-
source queries and G-tree may only be used for undirected networks and k-NN queries. SALT and
GRASP preprocessing times refer to parallel execution, using all available cores and G-tree prepro-
cessing times are sequential. For GRASP and SALT and its graph-separator sub-phase we only report
preprocessing times for the customization stage, similar to [5] and [15], since this is the preprocessing
that must be repeated when edge-weights change, as in the case of live-traffic road networks. For a fair
comparison, for G-tree we do not report the partitioning time required for the building of the G-tree in-
dex (which uses METIS [21]) and we only report the preprocessing time for calculating the SP distances
between the vertices inside the respective index structure. Results are presented on Table 1. Numbers
inside parentheses represent preprocessing times for undirected versions of the road networks.

Results clearly show that: (i) G-tree preprocessing times are very disappointing, especially for
Europe and travel times, when more than 24h are required for preprocessing, which is in huge
contrast with SALT’s preprocessing time which never exceeds 19s for all networks and metrics. (ii) In
comparison to GRASP, SALT may calculate both forward and reverse graph SSSP queries. If GRASP
was to be extended for reverse graph SSSP queries, its preprocessing time would double and hence it
would be 16−43% slower than SALT. (iii) SALT’s preprocessing time is very robust to the metric used and
preprocessing time is similar for both metrics. (iv) For undirected versions of the road networks (for
comparing results to G-tree), SALT’s preprocessing time drops in half, both for the GS customization
and landmarks phase. Note that although SALT’s total preprocessing time is better than any other
previous ALT based approach including [14], the GS customization phase could be potentially further
accelerated by using the optimizations of [9], such as SIMD instructions or contraction. But even
without those potential optimizations, SALT still provides excellent preprocessing time, considering
the fact that SALT may answer all variants of shortest-path queries on road networks.



4.2 Single-pair / single-source shortest-path queries In this section we will describe unidirectional
and bidirectional SALT-p2p query performance for single-pair shortest-path (SPSP) queries, compared
to its individual algorithmic components, namely ALT [17] as augmented in [14] and our customized
CRP [5] with the arc-reduction of [16], within the SALT framework. To that purpose, we executed
10,000 point-to-point queries with the pair of vertices selected uniformly at random. Regarding single-
source shortest-path (SSSP) queries, we report sequential and parallel performance of GRASP for one-
to-all queries within the SALT framework and compare it with the original version of GRASP (as
reported on [15] on an almost identical setting to ours). For both GRASP versions, the number in
parentheses represent sequential times. Results are presented in Table 2.

Considering SPSP query performance, results show that: (i) Unidirectional SALT-p2p is always
faster than bidirectional SALT-p2p. This is in stark contrast with its individual components (ALT and
CRP), in which bidirectional performance is significantly better. Thus, to the best of our knowledge,
uniSALT-p2p is the faster unidirectional algorithm for road networks, with preprocessing times of few seconds.
(ii) SALT-p2p is 100−266 times faster than ALT and 3−4 times faster than CRP. Note that our CRP’s
query performance is almost identical to the best CRP implementation of [4]. Moreover, SALT-p2p
path unpacking (i.e., providing full paths) would also be faster than CRP, since it uses bidirectional
ALT instead of bidirectional Dijkstra used by CRP [4]. (iii) SALT-p2p is impressively robust to the
metric used. In fact, uniSALT-p2p is slightly faster when we switch from travel times to travel distances.

Table 2: SALT-p2p and GRASP query performance
SPSP Query times (ms)

Travel Times (TT) Travel Distances (TD)
EUR USA EUR USA

biALT 103 60 133 89
CRP (+AR) 1.6 1.8 2 2

uniSALT-p2p 0.6 0.6 0.5 0.5
biSALT-p2p 0.9 0.9 0.9 0.9

SSSP Query times (ms)
GRASP (Orig) 43 (150) 58 (207) 46 (156) 66 (218)
GRASP (SALT) 50 (169) 65 (224) 53 (175) 68 (228)

Regarding SSSP queries, the GRASP im-
plementation within the SALT framework
is 5−12% slower for sequential and 3−16%
slower for parallel execution than the orig-
inal GRASP implementation. Still, it is
fast enough for most practical cases and
the SALT framework may also execute for-
ward and reverse SSSP queries, which is
also a considerable advantage. Note, that
the slightly less efficient implementation of

GRASP within SALT is mainly attributed to the fact that now |CL| = 16 (in comparison to |CL| = 128
in the original paper). Still, setting |CL| = 16 is the optimal setting for SPSP and k-NN queries, which
constitute the most typical queries encountered in any shortest-path framework on road networks. In
this sense, we decided to use this setting that benefits the most frequent type of queries.

4.3 k-NN queries In this section, we compare performance between SALT-kNN, Dijkstra and G-
tree [27], in the context of k-NN queries. For each experiment we generate 100 sets of random objects of
varying size |O| and for each such set we generate 100 random query locations, for a total of 10, 000 k-
NN queries per |O|. The same 10, 000 queries per |O| are executed for varying values of k = {1, 2, 4, 8, 16}
and we report average query times. Note, that G-tree also requires a target selection phase, for each set
of objects |O| (which takes almost 1.9−2.4s). Thus, contrarily to both Dijkstra and SALT-kNN, G-tree
cannot be used for moving objects. Results for k = 1 and k = 4 are presented in Fig. 3.

Results clearly show that SALT-kNN provides stable performance and query times significantly
below 1ms for k=1. Contrarily, G-tree is almost two - three orders of magnitude slower and therefore
cannot compete with either SALT-kNN or Dijkstra. Dijkstra starts very slow for small values of |O|
but manages to surpass SALT-kNN performance for |O| > 8192. This was inevitable to happen for
any k-NN method, since if the number of objects is significantly large and their distribution is random, an
efficient Dijkstra implementation would only have to scan a few hundred nodes. Still, since for static points
of interest we are usually interested in a specific type of objects (e.g., gas stations) and in the case of



(a) Europe (k=1) (b) USA (k=1)

(c) Europe (k=4) (d) USA (k=4)

Figure 3: SALT-kNN, Dijkstra and G-tree comparison for k=1 and k=4 and varying values of |O|.

moving objects we rarely have such large vehicle fleets (i.e., taxis, trucks) to monitor and we usually
aim for k-NN queries among the available vehicles (a much smaller subset of total vehicles), then the
SALT-kNN algorithm is surely to perform better for most practical applications.

After establishing the superiority of SALT-kNN over G-tree, in our second set of experiments, we
evaluate the impact of objects distribution to SALT-kNN and Dijkstra’s performance. To that purpose,
we adapt the methodology of [6]. We pick a vertex at random and run Dijkstra’s algorithm from it until
reaching a predetermined number of vertices |B|. If B is the set of vertices visited during this search,
we pick our objects O as a random subset of B. We keep the number of objects |O| steady at 214 and we
experiment with different values of |B| ranging from 214 . . . 224, to simulate cases of either: (i) points of
interest mainly located near the city-center or (ii) vehicle fleets which may service an entire continent
but operate mainly on a particular country. Results for k = 1 and k = 4 are presented in Fig. 4.

Result show, that once again SALT-kNN provides excellent performance regardless of the object
distribution, contrarily to Dijkstra which is 1-2 orders of magnitude slower when objects are not
uniformly located in the road network (which is the typical case, either for static or moving objects).
Thus, SALT-kNN is the only algorithm that guarantees excellent and stable performance, regardless of:
(i) the number of objects and (ii) the objects distribution. Moreover, it does not need a target selection
phase, such as G-tree or CRP and therefore, it may be used for either static or moving objects. Note,
than even without building an index, CRP would still require 10ms for the target selection phase for
16384 objects for the Europe road network (as recorded in [8] on a better workstation than ours) and
therefore, CRP would be at least 10 times slower than SALT-kNN for moving objects.

5 Summary and Conclusions
This work presented SALT, a novel framework for answering shortest-path queries on road networks,
including point-to-point, single-source (one-to-all, one-to-many, range) and k-NN queries. By com-
bining ideas from the ALT, CRP and GRASP algorithms, the SALT framework efficiently answers
point-to-point queries 3−4 times faster than previous algorithms of similar preprocessing times and
answers k-NN queries orders of magnitude faster than previous index-based approaches. Moreover,



(a) Europe (k=1) (b) USA (k=1)

(c) Europe (k=4) (d) USA (k=4)

Figure 4: SALT-kNN and Dijkstra comparison for |O| = 214, k = 1 and k = 4 and varying values of |B|.
the proposed SALT-kNN algorithm was shown to be especially robust, regardless of the metric used,
the number of objects or the distribution of objects in the road network. Hence, it presents itself as an
excellent solution for most practical use-cases.

Despite its excellent query performance, the most important advantage of the SALT framework is
its flexibility and versatility with respect to the different variants of the shortest-path queries it services.
The exact same data structures efficiently tackle a wide range of different shortest-path problems,
with preprocessing time of only a few seconds, making SALT suitable for dynamic (live-traffic) road
networks as well. To the best of our knowledge, there is no other framework that matches the benefits
and versatility of SALT. We truly consider it the algorithmic version of a swiss army knife for shortest-
path queries and the best overall solution for real-world applications.
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