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Abstract. Recent results on supercomputers show that beyond 65K
cores, the efficiency of molecular dynamics simulations of interfacial sys-
tems decreases significantly. In this paper, we introduce a dynamic cutoff
method (DCM) for interfacial systems of arbitrarily large size. The idea
consists in adopting a cutoff-based method in which the cutoff is cho-
sen on a particle-by-particle basis, according to the distance from the
interface. Computationally, the challenge is shifted from the long-range
solvers to the detection of the interfaces and to the computation of the
particle-interface distances. For these tasks, we present linear-time algo-
rithms that do not rely on global communication patterns. As a result,
the DCM algorithm is suited for large systems of particles and mas-
sively parallel computers. To demonstrate its potential, we integrated
DCM into the LAMMPS open-source molecular dynamics package, and
simulated large liquid/vapor systems on two supercomputers: SuperMuc
and JUQUEEN. In all cases, the accuracy of DCM is comparable to
the traditional particle-particle particle-mesh (PPPM) algorithm, while
the performance is considerably superior for large numbers of particles.
For JUQUEEN, we provide timings for simulations running on the full
system (458, 752 cores), and show nearly perfect strong and weak scaling.

Keywords: dynamic cutoff, interface detection, linear-time complexity,
scalability, molecular dynamics, fast sweeping method

1 Introduction

Molecular dynamics (MD) is a vital tool for computational chemistry, materials
science, biophysics, and many other fields. The basic idea underpinning MD is
the direct numerical integration of Newton’s laws of motion, which require the
frequent evaluation of forces between atomistic- or molecular-scale “particles”.
Although the underlying model is conceptually simple, significant challenges
arise because of the enormous number of particles found even in nanoscopic
systems. In this paper, we discuss the development implementation, and paral-
lelization of a new force computation algorithm especially designed for systemsar
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2 A Scalable, Linear-Time Dynamic Cutoff Algorithm for MD

consisting of large number of particles which demand the equivalent of “Tier-0”
computing resources.

Practically, MD calculations are limited by available computational resources,
with typical simulations today involving anywhere from 104 to 107 particles,
although simulations of 109 atoms or more have been reported in the litera-
ture [24,26]. In general, larger simulations are preferable to smaller ones because
smaller simulations can be affected by finite-size effects that reduce the accuracy
of the calculations by introducing spurious correlations between particles [11].
Moreover, in principle, every particle can interact with every other particle,
making the inherent complexity of MD O(N2). Thus, a primary driver of active
research in MD is reducing the algorithmic complexity of the force calculations
while preserving both accuracy and scalability.

To integrate Newton’s equations of motion, one needs to calculate the inter-
action forces among all of the particles in the system. Formally, these forces can
be calculated using any scheme that correctly accounts for all forces present.
Calculations are typically divided into bonded and non-bonded forces:

F = Fbonded + Fnon-bonded, (1)

where bonded forces result from the topological structure of molecules, while
non-bonded forces account for all other interactions (such as gravity and elec-
tromagnetic effects). Since the calculation of bonded forces already has linear
complexity, our focus is on the non-bonded forces, which can have complexity
up to O(N2). In particular, we focus on a class of forces known as dispersion
forces, which represent forces that exist as a result of the gravitational interac-
tion between particles, independent of any other internal and external forces in
the system. These dispersion forces are typically calculated as a sum of pairwise
interactions between particles, with the strength of the interaction depending on
the distance between them:

Fdisp =
∑

i<j

F(rij), (2)

where rij = |ri − rj | is the distance between atoms i and j.
Until recently, dispersion forces were treated using a cutoff on the distance,

beyond which they were assumed to be negligible:

F(rij) =

{
F(rij), rij ≤ rc
0 rij > rc

, (3)

where rc is the user-specified “cutoff” parameter. This approach, also referred to
as a short-range method, reduces the complexity of the force calculation in Eq. 2
from O(N2) to O(Nr3c ), where N is the number of particles. Such cutoff-based
methods are sufficiently accurate for homogeneous systems, whose composition
is uniform throughout the simulation volume. However, in heterogeneous sys-
tems, with nonuniform spatial density that leads to the existence of interfaces,
assuming isotropic behavior can cause major technical problems, as illustrated
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(a) Static cutoff. (b) Dynamic cutoff.

Fig. 1: Interfacial system using a (a) static cutoff and a (b) dynamic cutoff. Gray
area denotes the cutoff. The arrows represent the force acting on a particle. The
yellow arrow depicts the additional force contribution due to a larger cutoff.

in Fig. 1a. The red particle in the right-hand circle indicates the behavior in
the “bulk” part of the system, where isotropic behavior can be assumed and the
errors introduced by Eq. 3 largely cancel, as can be seen from the green particles
around the red particle, whose force contributions essentially negate one another.
However, near the interface, such as the blue particle on the left, this cancel-
lation of errors is impossible, as the distribution of atoms across the interface
is far from isotropic. This breakdown, which can lead to completely inaccurate
results, has been demonstrated by a number of different researchers [2,6,10,17].
Successful resolution of this problem is critical in a range of applications, includ-
ing industrial uses such as spreading and coating of films [14] as well as modeling
of the dynamics of cell membranes [4].
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Fig. 2: Weak scaling of the PPPM long
range solver (from the LAMMPS frame-
work) for an interfacial system with 1200
particles per core (IBM BG/Q).

A näıve solution to account for
the “missing” interactions in Fig. 1b
would be to increase the magnitude
of the cutoff rc; doubling and even
tripling the magnitude of the cutoff
has been proposed [33]. Such an ap-
proach is inherently undesirable, as
the O(Nr3c ) complexity of the method
means that doubling the cutoff leads
to an eight-fold increase in the cost
of the pairwise computations. In re-
sponse, a number of so-called “long-
range solvers” have been developed to
reduce the overall complexity. Most of
these approaches are based on Ewald
summation methods [8], which rely on Fourier transforms to reduce the com-
plexity of the force calculations to as little as O(N logN), with implementa-
tions based on the classical method [13] and mesh-based approaches such as
the particle-particle particle-mesh (PPPM) [15, 16] and particle mesh Ewald
(PME) [30] methods. Other approaches, such as the multilevel summation al-



4 A Scalable, Linear-Time Dynamic Cutoff Algorithm for MD

gorithm [27] further reduce the complexity to O(N). However, these methods
all suffer from a critical drawback: they require global communications between
different processors. Consequently, their scalability eventually decreases as the
number of cores increase and the cost of all-to-all communications becomes pro-
hibitively expensive [15], as shown in Fig. 2. Although Sun et al. [26] were able
to optimize communications within the PME solver in NAMD, an open-source
MD package, to achieve good strong scaling for a system with 108 particles on
up to 298 992 cores, their approach still requires all-to-all communications and
has a complexity of O(N logN).

Since short-range methods exhibit errors at the interface that are typically
two orders of magnitude larger than the errors for particles in the bulk phase [15],
it would be helpful to direct the computational resources to where they are most
needed. The approach we introduce in this paper, which we call the dynamic
cutoff method (DCM), circumvents the need for all-to-all communications by
making the cutoff a particle-dependent property. As shown in Fig. 1b, parti-
cles located in bulk regions, where the isotropic assumption is valid, can be
handled with a small cutoff, while particles close to the interface are assigned
a larger cutoff. Consequently, computational demands are kept to a minimum
while maintaining high accuracy. The DCM is closely related to static cutoff
methods [12, 28] and, as a result, inherits their good properties, such as strictly
local communication and good scalability. To make DCM competitive with state-
of-the-art solvers, we have also developed a fast and scalable algorithm to detect
interfaces. A similar method involving adaptive cutoffs, using a derived error es-
timate rather than the relative location of the particles to determine the cutoff,
was recently proposed [29]. However, as that algorithm still relies on the use of
fast Fourier transforms, its large-scale scalability remains questionable.

This paper outlines the development of the dynamic cutoff method and the
associated interface detection method, which has been parallelized and extended
to three dimensions. These algorithms were incorporated into the open-source
LAMMPS package [9,20], one of the most widely used MD simulators currently
available. We show that our implementation of the dynamic cutoff algorithm
achieves linear-time scaling for interfacial systems, even when utilizing the entire
JUQUEEN supercomputer at the Forschungszentrum Jülich.

2 Dynamic Cutoff Method

The core idea of the DCM is to circumvent the use of long-range solvers by
adaptively choosing the cutoff on a particle-by-particle basis, using small cutoffs
for particles far away from the interface and increasingly larger cutoffs as one
approaches the interface. Clearly, this strategy requires knowledge of the position
and the time evolution of the interface.

The computational tasks involved in one iteration of the DCM are shown
schematically in Fig. 3. First, the interface is identified (box 1); for each particle,
the distance from the interface is computed, and the cutoff for each atom is
determined and assigned (box 2). Like classical short-range methods, the DCM
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builds a neighbor list (box 3), enabling each particle to access its neighbors in
O(1) time. Finally, pairwise forces are computed (box 4), and the positions and
velocities of all particles are updated (box 5). At this point, the next iteration
begins. Since in typical MD simulations the interface changes very slowly, the
interface detection and neighbor-list build need not be executed every iteration.

Particle positions

Neighbor-
list build
required?

Interface
detection
required?

1) Interface detection

2) Cutoff assignment

3) Neighbor-list build

4) Force calculation

5) Update particles

New Particle positions

yes

no

yes

no

Fig. 3: Schematic overview of the dynamic cutoff method.

Before describing the individual tasks, we briefly discuss our overall par-
allelization strategy for distributed memory environments. Following the main
scheme used by LAMMPS, the physical domain is spatially decomposed and
assigned to the underlying three-dimensional grid of MPI processes. Each pro-
cess p is responsible for one subdomain Lp ⊆ L of the computational domain
L = Lx × Ly × Lz ⊂ R3, and has an average memory requirement of O(N/P ),
where N and P are the total number of particles and processes, respectively.
Particles can migrate between pairs of neighboring processes [20]. As we will
show, irrespective of the task performed, each process only communicates with
its direct neighbors, so that global communication patterns are entirely avoided.1

DCM exhibits a linear dependence on the number of particles in the system.

The first four tasks enumerated in Fig. 3 are covered in detail in the next sub-
sections. The final task, responsible for the updates of the particle positions and
velocities, uses velocity Verlet integration [28], the standard integration scheme
in MD simulations, and is therefore not discussed further.

1 With the exception of a reduction operation to identify the maximum of a scalar in
the interface detection method.
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2.1 Interface Detection

Our approach for a fast interface detection is inspired by algorithms for binary
image segmentation. The main idea is that an interface delineates the regions of
the physical domain in which the density of particles changes; with this in mind,
we treat particle densities as gray-scale values and apply image segmentation
techniques to the data. In three dimensions, this effectively becomes a gray-
scale volume of voxels (3D pixel). As shown in Fig. 4a, to create the gray-scale
volume from the particle positions, all particles are binned into small 3D h ×
h×h “boxes”,2 effectively decomposing each subdomain Lp into small 3D boxes
bx,y,z ⊂ Lp; this operation only requires neighbor-neighbor communication.

At this stage, each box is treated as a voxel and is assigned a gray-scale
value according to its relative particle density (Fig. 4b). Based on this gray-scale
volume, the segmentation (Fig. 4c) can be computed as the minimization of the
piecewise constant Mumford-Shah functional for two-phase segmentation [1,18].
The result is a binary classification of the boxes, differentiating high-density
phases (e.g., liquid) from low-density ones (e.g., vapor). A distributed-memory
implementation of this third stage boils down to the parallelization of a 3D
finite-difference stencil [3, 9]. Starting from the Mumford-Shah algorithm from
the QuocMesh open-source library [21], an accurate 3D segmentation algorithm
for shared-memory architectures, we developed an MPI-based parallelization,
adding support for the periodic boundary conditions typically used in MD sim-
ulations; this algorithm is now included in QuocMesh.

(a) Binning (b) Gray-scale volume (c) Segmented volume

Fig. 4: Interface detection: a 2D slice from a 3D domain.

The output of the three stages shown in Fig. 4 is a segmented volume S:

S = {sx,y,z ∈ {0, 1} | 0 ≤ x < Nx, 0 ≤ y < Ny, 0 ≤ z < Nz}, (4)

where Nx, Ny and Nz are the number of local boxes on a given processor; sx,y,z
equals 0 if the corresponding box bx,y,z belongs to the low-density phase, and
sx,y,z = 1 otherwise. The interface is then determined by adjacent boxes with
discontinuous values (Fig. 4c). The minimization of the Mumford-Shah func-
tional might result in the set S presenting low-density “bubbles” inside the
high-density region and vice versa. Depending on their size, such bubbles can be

2 The edge length h determines the resolution of the interface and can be automati-
cally chosen at the beginning of the simulation.
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interpreted as false-detections and cause a noticeable performance degradation
(bubbles yield additional interfaces and hence unnecessarily large cutoffs). For
this reason, we apply a parallel multi-stage filtering algorithm to identify and
remove connected components smaller than a user-specified volume. This step,
which again requires communication only between neighboring processes, is de-
scribed in [25]. In contrast to other interface-detection methods [5, 19, 22], our
algorithm is so fast that it does not affect the performance of an MD simulation.

2.2 Cutoff assignment

The objective of this task is to adaptively assign a suitable cutoff to each in-
dividual particle; to this end, the set Dp of box-interface distances,3 and from
this the particle-interface distances δ are then derived. Two numerical methods
for approximating the box-interface distances are the Fast Marching Method
(FMM) [23] and the Fast Sweeping Method (FSM) [32]. Let Nv be the number
of voxels of the system; FMM has a complexity O(Nv logNv) and is generally
more accurate than FSM. However, since FSM has a preferred complexity of
O(Nv) and in practice its accuracy is sufficient for the DCM, we adopted an
FSM-based approach.

Because the cutoffs for particles vary only for particles within a given distance
from the interface, we need not compute the exact distance between the interface
and each box. Instead, it suffices to carry out the calculations up to a certain
threshold distance rgridc , since beyond this distance, the “minimum cutoff” will
be applied, regardless of the actual distance from the interface. This problem
formulation makes it possible to devise a fast sweeping method that only requires
local communication and the reduction of a scalar.

Zhao et al. proposed two parallel algorithms/implementations for the FSM [31].
Since scalability is one of our main concerns, we developed our own version of
FSM which was specifically tailored to the needs of our problem. Henceforth we
call our implementation a cutoff-based fast sweeping method (CFSM).

As shown in Algorithm 2.1, the CFSM propagates box-interface distances
outwards until the distance is larger than the threshold rgridc .4 Visually, the
algorithm unfolds as a wave that starts at the interface and flows outwards until
it has traveled the maximum distance rgridc . The set of box-interface distancesDp,
local to process p, is initialized such that boxes at the interface and in the low-
density region are assigned a distance of 0, while boxes in the high-density region
are assigned a distance of +∞ (line 1). All boxes adjacent to the interface and
have nonzero distance are added to queue Q, which keeps track of the remaining
boxes to be processed. After initialization, Q is processed breadth-first. For each
box, indexed as (x, y, z), the distance to the interface is computed using a FSM
on the local subdomain (line 4), the distance of box bx,y,z is updated (line 8),

3 Dp = {dx,y,z ∈ R |0 ≤ x < Nx, 0 ≤ y < Ny, 0 ≤ z < Nz}; the superscript p indicates
that this set is computed on each process, in parallel.

4 The exact value for the threshold is not important here. More information is provided
in [25].
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Algorithm 2.1 Distributed cutoff-based fast sweeping method.

1: initialize(Dp, Q) . Add interfacial boxes to Q
2: for 0 ≤ iter < itermax do
3: for all boxes (x, y, z) ∈ Q do
4: dnew ← solveDistance(Dp, (x, y, z)) . local FSM
5: if dnew ≤ rgridc then
6: if |dx,y,z − dnew| > ∆e then
7: ∆e← |dx,y,z − dnew|
8: dx,y,z ← dnew

9: addNeighborsToQueue(Q̃, (x, y, z))

10: swapQueues(Q, Q̃)

11: emptyQueue(Q̃)
12: ∆e← MPI Allreduce(∆e, MAXIMUM)
13: if ∆e < ε then
14: break
15: ghostExchange(Dp) . Local communication
16: addModifiedBoundariesToQueue(Dp, Q)

and all its adjacent boxes are added to the auxiliary queue Q̃ (line 9). Once all

boxes in Q have been processed, the queues Q and Q̃ are swapped (line 10),
and the maximum difference ∆e between the old and new distances (line 7)
is reduced among all processes (line 12). If ∆e < ε for some threshold ε (line
13), all processes terminate; otherwise, each process communicates its boundary
boxes to its neighbors (line 15), adds the received boundary to Q (line 16), and
enters a new iteration. Typically, two to four iterations suffice for convergence.
For completeness, we point out that for any box within the threshold rgridc , this
implementation yields the same results as the algorithms proposed by Zhao et
al. [31].

From the set of computed box-interface distances Dp, the particle–interface
distances δi ∈ R, i ∈ [1, . . . , N ], can be estimated via trilinear interpolation. The
cutoff rc of each particle is then chosen as a function of δi.

5 In all cases, particles
at the interface or within the low-density phase are assigned a larger cutoff, up
to rmax

c , than particles further away; beyond a given distance from the interface,
particles in the high-density phase are assigned the minimum cutoff rmin

c .

2.3 Neighbor-list Build

Neighbor lists in MD simulations allow particles to access all of their neighbors
in constant time. Hockney et al. [12] introduced the linked-cell method, which
bins particles into cells of edge rc, thereby restricting the search for neighbors
of particle i to the cell containing particle i and its 26 neighbors. An alternative
technique, introduced by Verlet et al. [28], uses a neighbor (or Verlet) list for
each particle i: the indices of all particles that interact with particle i are stored

5 Possible interpolation functions and the resulting accuracy are discussed in [25].



A Scalable, Linear-Time Dynamic Cutoff Algorithm for MD 9

(i.e., rij ≤ rc) (Algorithm 2.2). In practice, a skin distance rs > 0 is introduced,
so that particles with rij ≤ rc+rs are stored; this allows reuse of the neighbor list
over multiple timesteps. A drawback of this technique is that the neighbor list
must be updated frequently [7]. Currently, the most common approach combines
these techniques and bins all particles only when a neighbor-list build is required.

Algorithm 2.2 outlines the steps needed to build a neighbor list in the specific
context of the DCM; it is assumed that all particles are already spatially sorted
into bins. For each particle i, the algorithm loops over all particles j in the
neighboring bins jBin and adds j to the neighbor list of particle i if rij is less
than the cutoff rc[i] of atom i.

Algorithm 2.2 Neighbor-list build.

1: for all local atoms i do
2: nNbrs[i]← 0
3: iBin ← getBin(i)
4: for all jBin ∈ neighbors(iBin) do
5: for all atoms j of jBin do
6: rij ← ri − rj
7: if |rij| < rc[i] and i 6= j :
8: nbrsi[nNbrs[i]]← j
9: nNbrs[i]← nNbrs[i] + 1

Algorithm 2.3 Force calculation.

1: for all atoms i do:
2: fi ← 0
3: for all neighbors k of i do
4: j ← nbrsi[k]
5: rij ← ri − rj
6: if |rij| < rc[i] :
7: f ← forceLJ(|rij|)
8: fi ← fi − f × rij

9: force[i]← force[i] + fi

The varying cutoffs of DCM pose additional challenges for efficient imple-
mentation of the neighbor-list build. With a static cutoff, all particles traverse
the same stencil of neighboring cells. If applied to the DCM, this static approach
would result in poor performance because particles with a small cutoff traverse
the same volume as particles with the maximum cutoff. For instance, assuming
rmin
c = 1

2r
max
c and a typical skin distance rs = 0.1rmax

c , all particles would
traverse a volume Vcube = (3(rmax

c + rs)
3) to find their neighbors. However, par-

ticles assigned the minimum cutoff have their neighbors within the much smaller

volume Vmin = 4
3πr

min
c

3
. Thus, only Vmin/Vcube ≈ 1.5% of all particle-particle

calculations would contribute to the neighbor-list build (i.e., Line 7 of Algo-
rithm 2.2 would return false 98.5% of the time). Since the neighbor-list build
is memory-bound, this approach would nullify any performance benefit gained
using dynamic cutoffs.

The solution lies in the choice of the bins’ edge length: instead of lmax =
rs +rmax

c , we use an edge length of lmin = rs +rmin
c or smaller. While this results

in having to traverse a slightly larger stencil of neighboring cells, the traversed
volume is considerably smaller than Vcube and results in many fewer spurious
distance calculations. Note that the complexity of this improved neighbor-list
build is hidden in Line 4 of Algorithm 2.2. This optimization yields a 4×–6×
speedup of the neighbor-list build over the binning with edge length lmax.

2.4 Force Calculation

Compared to classical short-range methods, the force calculations within the
DCM (Algorithm 2.3) show two striking differences: a particle-dependent cutoff
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(shown in red), and the inapplicability of Newton’s third law of motion6 (hence-
forth called N3). Since the cutoff is independently assigned to each particle, the
fact that particle j is “influenced” by particle i does not imply that particle
i is influenced by particle j. Effectively, neglecting N3 means that the update
fj ← fj + f × rij, which would appear in Algorithm 2.3 right after Line 8, is not
performed. Computationally, this results in twice as many force calculations,
but also allows a better memory access pattern, since costly scattered memory
accesses for fj are avoided.7

Our DCM implementation is based on the existing short-range Lennard-Jones
solver in LAMMPS. We developed both a pure MPI implementation, as well as
a hybrid MPI + OpenMP-based shared-memory parallelization that allows us to
start multiple threads per MPI rank, reducing both the memory requirements
and communication overhead. While the shared-memory implementation con-
sists of simple OpenMP directives—for instance, (#pragma omp for sched-
ule(dynamic,20)) before the outermost loops of Algorithm 2.2 and 2.3 suffices
to distribute the loops across multiple threads—we stress that the default static
schedule would result in severe load imbalance (due to different cutoffs for differ-
ent particles). By contrast, a dynamic schedule, using tasks of about 20 particles,
results in almost perfectly load-balanced simulations. The benefits of dynamic
scheduling become more apparent as more threads are involved. Simulations
with 256 MPI ranks and 16 threads per rank8 show a speedup of 1.4× for the
neighbor list and 2.2× for the force-calculation kernels over static scheduling.

3 Simulation Methodology

We present performance results for two interfacial systems: one with a planar
interface (Fig. 5a) and another with a non-planar interface (Fig. 5b). As the
processor count increases, the area of the interface in the planar system is scaled
proportionally in two dimensions (i.e., creating a large plane), and in the non-
planar system is extended along its cylindrical axis.

Both accuracy and performance are compared to the particle-particle particle-
mesh solver (PPPM), a state-of-the-art long-range algorithm included in the
LAMMPS package. Specifically, the measurements for the static cutoff method
and PPPM are obtained using LAMMPS, version 30Oct14, with the OpenMP
user-package installed. For all experiments, the settings for PPPM are chosen ac-
cording to [16] and are considered to be optimal. Unless otherwise specified, the
minimum and maximum cutoff of DCM are respectively set to rmin

c = 3.0 and
rmax
c = 8.0, such that the resulting accuracy is comparable to that of PPPM.

The experiments were carried out on two different supercomputing architectures:
SuperMuc and JUQUEEN.

6 If a body i exerts a force f onto another body j, then j exerts a force −f on i.
7 This is why most GPU implementations of force calculations also neglect N3.
8 Running on 1024 cores on the BlueGene/Q supercomputer with simultaneous multi-

threading enabled for four threads per core.
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(a) Planar interface. (b) Non-planar interface.

Fig. 5: The two interfacial systems used in this publication.

SuperMUC. The SuperMUC supercomputer at the Leibniz Supercomputing
Centre is based on Intel’s Sandy Bridge architecture, with 147.456 cores and
288 TB of main memory arranged in 18 “islands” of 512 nodes each. A node
consists of two Intel Xeon E5-2680 CPUs with a total of 16 cores. We used
Intel’s C++ compiler icpc 14.0.3 with compiler flags -O3 -restrict -ip -unroll0
-openmp -xAVX.

JUQUEEN. The JUQUEEN supercomputer at Forschungszentrum Jülich is a
IBM Blue Gene/Q machine with 28.672 nodes organized in 28 racks, each com-
prising 1024 nodes. A node consists of 16 IBM PowerPC A2 cores, and 16GBs of
DDR3 memory, for a total of 458.752 cores and 448 TB of main memory. We used
IBM’s C compiler xlc++ 12.01 with compiler flags -O3 -qarch=qp -qtune=qp -
qsmp=omp -qsimd=auto -qhot=level=2 -qprefetch -qunroll=yes.

4 Performance and Accuracy Results

4.1 Accuracy

As discussed in Section 1, every physical property (e.g., pressure, density) in a
molecular dynamics simulation relies on accurate force calculations. We there-
fore choose to measure the per-particle error in the forces perpendicular to the
interface (in these experiments, along the z-direction) to validate the correctness
of DCM. A detailed accuracy analysis of DCM is beyond the scope of this paper.
The error ∆fiz of particle i is computed as follows:

∆fiz = f∗iz − fiz (5)

where f∗iz denotes the correct force for particle i along the z-direction.9 We only
show the component of the error perpendicular to the interface because this is
much larger than the error along either of the other directions.

Fig. 6 shows the error in the z-component of the forces for the planar system
with 19.200 particles for PPPM and DCM with different maximum cutoffs. First,

9 f∗
iz is computed by the accurate (but expensive) Ewald long-range solver.
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Fig. 6: Absolute error in the z-direction (i.e., perpendicular to the interface)
for the planar system with 19, 200 particles. Each cross corresponds to a single
particle. DCM uses a minimum cutoff of rmin

c = 3.0σ.

DCM setting 3.0/7.0 3.0/8.0 3.5/8.0 3.0/9.0 3.5/9.0

Speedup 2.31 2.66 2.38 2.42 2.23

Table 1: Speedup of DCM over a static cutoff with rc = rmax
c for the planar

system with 12 million particles. The DCM setting reads as rmin
c /rmax

c . The
experiments were run on JUQUEEN using 1024 cores (256 MPI ranks and 16
threads per rank).

we note that the errors of DCM and PPPM are comparable in magnitude. Sec-
ond, larger cutoffs for DCM lead to more accurate results, as expected. Third, in
DCM the errors are smaller at the interface; this is critical, as the error strongly
influences the physical behavior [15,16,25]. Finally, as the dashed lines indicate,
one can see that our interface detection method correctly identifies the interface.

4.2 Performance

We compare the performance of DCM with the static cutoff method and PPPM
on two different architectures. Table 1 shows the speedup of DCM over its static
counterpart for the planar system. The simulation was run on JUQUEEN, on
1024 cores with 1200 particles per core. The static cutoff is set to the maximum
DCM cutoff: rc = rmax

c . Despite not exploiting Newton’s third law, the DCM
outperforms the static cutoff version by at least a factor of 2.2. We note that
these speedups are highly dependent on the ratio between the number of particles
at the interface and away from the interface; depending on this ratio, even higher
speedups can be expected by incorporating Newton’s third law.

Fig. 7 presents the strong and weak scalability on SuperMUC for the non-
planar system and on JUQUEEN for the planar system. On both architectures,
the weak scaling experiments were performed with 1200 particles per core, while
the strong scaling experiments use a system with roughly 4× 107 particles.
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Fig. 7: Strong (a, b) and weak (c, d) scalability for PPPM and DCM.

Figs. 7a and 7b show a head-to-head comparison between DCM and PPPM
in terms of strong scalability. The results for the pure MPI version of PPPM
expose a degradation in scalability starting from 4k and 8k cores on Super-
MUC and JUQUEEN, respectively. On JUQUEEN, we also ran an hybrid mul-
tithreaded+MPI version of PPPM, using 8 threads per MPI rank; this config-
uration attained somewhat better timings than the pure MPI version, but con-
sistently crashed on 32k cores or more. The DCM achieved convincing (nearly-
linear) scalability on both systems.

The weak scalability behaviour of DCM and PPPM is illustrated in Figs. 7c
and 7d. On both systems, the trend of PPPM (red line) matches exactly the
behaviour presented in 2: use of FFTs causes the scalability to progressively
deteriorate as the number of cores increases. This phenomenon is only delayed
in the hybrid multithreaded + MPI version of PPPM (orange line in Fig. 7d),
which eventually follows the same diverging trend. The results for the DCM on
JUQUEEN clearly indicate the need for a parallel interface detection method,
since the serial implementation (blue line), although extremely fast, eventually
becomes the bottleneck for the entire DCM. Finally, we direct our attention to
the DCM (green line) with parallel interface detection (as described in Sec. 2.1):
for both the planar and the nonplanar systems, scalability is nearly perfect.
Indeed, Fig. 7d reveals that on JUQUEEN it was possible to scale the system up
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to 5.5 × 108 particles on all 458, 752 available cores, while attaining ideal weak
scalability.

5 Conclusion

We have developed a dynamic cutoff method to study large-scale interfacial and
heterogeneous systems in molecular dynamics simulations containing millions of
particles on massively parallel supercomputers. Our method is based on making
the cutoff for force calculations between particles a particle-dependent property.
We have implemented DCM as part of the open-source LAMMPS MD package
and showed that it exhibits desired properties such as (1) linear-time complex-
ity, (2) local communication, and (3) ideal weak- and strong-scaling on up to
458, 752 cores. Moreover, our performance results show that DCM outperform
state-of-the-art algorithms for large interfacial Lennard-Jones systems. These
experiments suggest that DCM is a promising algorithm for massively parallel
supercomputers.

We have also presented a scalable interface detection method for non-planar
interfaces. This method is fast enough to be applicable in real time throughout
the course of an MD simulation, which may open the door to a wide variety of
new MD applications. This interface detection method enabled us to preserve
the linear scaling of the DCM for short-ranged potentials.

Even though not investigated further in this paper, DCM can be used as a
replacement for short-range calculations within mesh-based Ewald solvers (e.g.,
PPPM). This allows to shift computational workload from the FFTs to the
short-range calculations and therefore should improve the scalability of these
solvers as well.

Acknowledgments. The authors gratefully acknowledge financial support from
the Deutsche Forschungsgemeinschaft (German Research Association) through
grant GSC 111, computing resources on the supercomputer JUQUEEN at Jülich
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