Skip to main content

Suboptimal Graph Edit Distance Based on Sorted Local Assignments

  • Conference paper
  • First Online:
Multiple Classifier Systems (MCS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9132))

Included in the following conference series:

Abstract

Graph based pattern representation offers a number of useful properties. In particular, graphs can adapt their size and complexity to the actual pattern, and moreover, graphs are able to describe structural relations that might exist within a pattern. Yet, the high representational power and flexibility of graphs is accompanied by a significant increase of the complexity of many algorithms. For instance, exact computation of pairwise graph distance can be accomplished in exponential time complexity only. A previously introduced approximation framework reduces the problem of graph distance computation to an instance of a linear sum assignment problem. This allows suboptimal graph distance computation in cubic time. The present paper introduces a novel procedure, which is conceptually related to this previous approach, but offers \(O(n^2 \log (n^2))\) (rather than cubic) run time. We empirically verify the speed up of our novel approximation and show that the faster approximation is able to keep up with the existing framework with respect to distance accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bipartite Graph Edit Distance (LSAPs can be formulated by means of bipartite graphs).

  2. 2.

    The \(i\)-th node \(u_i \in V_1\) is marked as unavailable only, if the corresponding index \(i\) is not equal to \(\varepsilon \), of course. The same accounts for index \(j\) and node \(v_j\in V_2\).

  3. 3.

    Note that both means are computed on the sets of distances where an SMLA approach actually over- or underestimates the original approximation.

References

  1. Lumini, A., Maio, D., Maltoni, D.: Inexact graph matching for fingerprint classification. Mach. Graph. Vis. Spec. Issue Gr. Transform. Pattern Gener. CAD 8(2), 231–248 (1999)

    Google Scholar 

  2. Richiardi, J., Achard, S., Bunke, H., Van De Ville, D.: Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience. IEEE Signal Process. Mag. 30(3), 58–70 (2013)

    Article  Google Scholar 

  3. Cesare, S., Xiang, Y.: Malware variant detection using similarity search over sets of control flow graphs. In: Proceedings of 10th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 181–189 (2011)

    Google Scholar 

  4. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. J. Pattern Recog. Artif. Intell. 18(3), 265–298 (2004)

    Article  Google Scholar 

  5. Foggia, P., Percannella, G., Vento, M.: Graph matching and learning in pattern recognition in the last 10 years. Int. J. Pattern Recog. Art. Intell. Online Ready 28 (2014)

    Google Scholar 

  6. Gaüzère, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoinformatics. Pattern Recogn. Lett. 33(15), 2038–2047 (2012)

    Article  Google Scholar 

  7. Rossi, L., Torsello, A., Hancock, E.R.: A continuous-time quantum walk kernel for unattributed graphs. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 101–110. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Emms, D., Hancock, E.R., Wilson, R.C.: A correspondence measure for graph matching using the discrete quantum walk. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 81–91. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recogn. Lett. 1, 245–253 (1983)

    Article  MATH  Google Scholar 

  10. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. (Part B) 13(3), 353–363 (1983)

    Article  MATH  Google Scholar 

  11. Robles-Kelly, A., Hancock, E.: Graph edit distance from spectral seriation. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 365–378 (2005)

    Article  Google Scholar 

  12. Myers, R., Wilson, R., Hancock, E.: Bayesian graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 628–635 (2000)

    Article  Google Scholar 

  13. Rebagliati, N., Solé-Ribalta, A., Pelillo, M., Serratosa, F.: Computing the graph edit distance using dominant sets. In: Proceedings of 21st International Conference on Pattern Recognition, pp. 1080–1083 (2012)

    Google Scholar 

  14. Sorlin, S., Solnon, C.: Reactive tabu search for measuring graph similarity. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 172–182. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (2006)

    Article  Google Scholar 

  16. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vis. Comput. 27(4), 950–959 (2009)

    Article  Google Scholar 

  17. Caetano, T., McAuley, J.J., Cheng, L., Le, Q., Smola, A.: Learning graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)

    Article  Google Scholar 

  18. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  19. Knuth, D.: 5.2.4: sorting by merging. In: Sorting and Searching. The Art of Computer Programming 3, pp. 158–168. Addison Wesley (1998)

    Google Scholar 

  20. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR & SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Hasler Foundation Switzerland and the Swiss National Science Foundation project 200021_153249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaspar Riesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Riesen, K., Ferrer, M., Bunke, H. (2015). Suboptimal Graph Edit Distance Based on Sorted Local Assignments. In: Schwenker, F., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2015. Lecture Notes in Computer Science(), vol 9132. Springer, Cham. https://doi.org/10.1007/978-3-319-20248-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20248-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20247-1

  • Online ISBN: 978-3-319-20248-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics