Skip to main content

An Empirical Investigation on the Use of Diversity for Creation of Classifier Ensembles

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9132))

Abstract

We address one of the main open issues about the use of diversity in multiple classifier systems: the effectiveness of the explicit use of diversity measures for creation of classifier ensembles. So far, diversity measures have been mostly used for ensemble pruning, namely, for selecting a subset of classifiers out of an original, larger ensemble. Here we focus on pruning techniques based on forward/backward selection, since they allow a direct comparison with the simple estimation of accuracy of classifier ensemble. We empirically carry out this comparison for several diversity measures and benchmark data sets, using bagging as the ensemble construction technique, and majority voting as the fusion rule. Our results provide further and more direct evidence to previous observations against the effectiveness of the use of diversity measures for ensemble pruning, but also show that, combined with ensemble accuracy estimated on a validation set, diversity can have a regularization effect when the validation set size is small.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If no predefined size is given, FS stops when all the classifiers from E have been added, and returns the best ensemble among the N ones obtained at every iteration.

  2. 2.

    http://www.ics.uci.edu/~mlearn/MLRepository.html.

  3. 3.

    http://it.mathworks.com/help/nnet/ref/patternnet.html.

  4. 4.

    http://pralab.diee.unica.it/en/MCS2015Appendix1.

References

  1. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: EnsembleUWA diversity measures and their application to thinning. Inf. Fusion 6(1), 49–62 (2005)

    Article  Google Scholar 

  2. Brown, G., Wyatt, J.L., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Inf. Fusion 6(1), 5–20 (2005)

    Article  Google Scholar 

  3. Brown, G., Kuncheva, L.I.: “Good” and “Bad” diversity in majority vote ensembles. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 124–133. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of models. In: 21st International Conference on Machine Learning, p. 18. ACM (2004)

    Google Scholar 

  5. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2005)

    MathSciNet  Google Scholar 

  6. Didaci, L., Fumera, G., Roli, F.: Diversity in classifier ensembles: fertile concept or dead end? In: Zhou, Z.-H., Roli, F., Kittler, J. (eds.) MCS 2013. LNCS, vol. 7872, pp. 37–48. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Ko, A.H.-R., Sabourin, R., de Souza Britto Jr., A.: Compound diversity functions for ensemble selection. Int. J. Patt. Rec. Artif. Int. 23(4), 659–686 (2009)

    Article  Google Scholar 

  8. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 7, pp. 231–238. MIT Press, Cambridge (1995)

    Google Scholar 

  9. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)

    Article  MATH  Google Scholar 

  10. Kuncheva, L.I.: A bound on kappa-error diagrams for analysis of classifier ensembles. IEEE Trans. Knowl. Data Eng. 25(3), 494–501 (2013)

    Article  Google Scholar 

  11. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms, 2nd edn. Wiley, Hoboken (2014)

    Book  Google Scholar 

  12. Li, N., Yu, Y., Zhou, Z.-H.: Diversity regularized ensemble pruning. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 330–345. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: 14th International Conference Machine Learning, pp. 378–387. Morgan Kaufmann (1997)

    Google Scholar 

  14. Martinez-Munoz, G., Suarez, A.: Aggregation ordering in bagging. In: International Conference on Artificial Intelligence and Applications, pp. 258–263 (2004)

    Google Scholar 

  15. Partalas, I., Tsoumakas, G., Vlahavas, I.P.: An ensemble uncertainty aware measure for directed hill climbing ensemble pruning. Mach. Learn. 81, 257–282 (2010)

    Article  MathSciNet  Google Scholar 

  16. Partridge, D., Yates, W.B.: Engineering multiversion neural-net systems. Neural Comput. 8(4), 869–893 (1996)

    Article  Google Scholar 

  17. Prodromidis, A., Stolfo, S.J.: Pruning meta-classifiers in a distributed data mining system. In: Proceedings of the 1st National Conference on New Information Technologies, pp. 151–160 (1998)

    Google Scholar 

  18. Rokach, L.: Collective-agreement-based pruning of ensembles. Comp. Stat. Data Anal. 53(4), 1015–1026 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tang, E.K., Suganthan, P.N., Yao, X.: An analysis of diversity measures. Mach. Learn. 65, 247–271 (2006)

    Article  Google Scholar 

  20. Tsoumakas, G., Partalas, I., Vlahavas, I.: An ensemble pruning primer. In: Okun, Oleg, Valentini, Giorgio (eds.) Applications of Supervised and Unsupervised Ensemble Methods. SCI, vol. 245, pp. 1–13. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Ueda, N., Nakano, R.: Generalization error of ensemble estimators. In: International Conference on Neural Networks, pp. 90–95 (1996)

    Google Scholar 

  22. Yu, Y., Li, Y.-F., Zhou, Z.-H.: Diversity regularized machine. In: 22nd International Joint Conference on Artificial Intelligence, pp. 1603–1608 (2011)

    Google Scholar 

  23. Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: many could be better than all. Artif. Intell. 137(1–2), 239–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yu, Y., Li, Y.-F., Zhou, Z.-H.: Diversity regularized machine. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 1603–1608 (2011)

    Google Scholar 

  25. Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms. CRC Press, USA (2012)

    Google Scholar 

Download references

Acknowledgments

This work has been partly supported by the project CRP-59872 funded by Regione Autonoma della Sardegna, L.R. 7/2007, Bando 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Fumera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ahmed, M.A.O., Didaci, L., Fumera, G., Roli, F. (2015). An Empirical Investigation on the Use of Diversity for Creation of Classifier Ensembles. In: Schwenker, F., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2015. Lecture Notes in Computer Science(), vol 9132. Springer, Cham. https://doi.org/10.1007/978-3-319-20248-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20248-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20247-1

  • Online ISBN: 978-3-319-20248-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics