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Abstract. We provide a lower complexity bound for the satisfiability
problem of a multi-agent justification logic, establishing that the gen-
eral NEXP upper bound from our previous work is tight. We then use
a simple modification of the corresponding reduction to prove that sat-
isfiability for all multi-agent justification logics from there is Σp

2
-hard

– given certain reasonable conditions. Our methods improve on these
required conditions for the same lower bound for the single-agent justi-
fication logics, proven by Buss and Kuznets in 2009, thus answering one
of their open questions.

1 Introduction

Justification Logic is the logic of justifications. Where in Modal Epistemic Logic
we use formulas of the form �φ to denote that φ is known (or believed, etc), in
Justification Logic, we use t :φ to denote that φ is known for reason t (i.e. t is a
justification for φ). Artemov introduced LP, the first justification logic, in 1995
[5], originally as a link between Intuitionistic Logic and Peano Arithmetic. Since
then the field has expanded significantly, both in the variety of logical systems
and in the fields it interacts with and is applied to (see [6, 7] for an overview).

In [21] Yavorskaya introduced two-agent LP with agents whose justifications
may interact. We studied the complexity of a generalization in [3] and [4], dis-
covering that unlike the case with single-agent Justification Logic as studied
in [12, 13, 15, 8, 1], the complexity of satisfiability jumps to PSPACE- and EXP-
completeness when two or three agents are involved respectively, given appropri-
ate interactions. In fact, the upper bound we proved was that all logics in this
family have their satisfiability problem in NEXP – under reasonable assumptions.

The NEXP upper complexity bound was not met with the introduction of a
NEXP-hard logic in [4]. The main contribution of this paper is that we present
a NEXP-hard justification logic from the family that was introduced in [4], thus
establishing that the general upper bound is tight.

In general, the complexity of the satisfiability problem for a justification logic
tends to be lower than the complexity of its corresponding modal logic1 (given

1 That is, the modal logic that is the result of substituting all justification terms in
the axioms with boxes and adding the Necessitation rule.
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the usual complexity-theoretic assumptions). For example, while satisfiability for
K, D, K4, D4, T, and S4 is PSPACE-complete, the complexity of the corresponding
justification logics (J, JD, J4, JD4, JT, and LP respectively) is in the second level
of the polynomial hierarchy (in Σp

2 , specifically). In the multi-agent setting we
have already examined, this is still the case: many justification logics that so
far demonstrate a complexity jump (to PSPACE- or EXP-completeness) have
corresponding modal logics with an EXP-complete satisfiability problem (c.f.
[20, 9, 1, 2]). It is notable that, assuming EXP 6= NEXP, this is the first time we
have a justification logic with a higher complexity than its corresponding modal
logic, and, in fact, the reduction we use makes heavy use of the effects of the
way a justification term is constructed.

In a justification logic, the logic’s axioms are justified by constants, a kind
of minimal (not analyzable) justification. A constant specification is part of the
description of a justification logic and specifies exactly which constants justify
which axioms. There are certain standard assumptions we often need to make
when studying the complexity of a justification logic. One is that the logic has an
axiomatically appropriate constant specification, which means that all axioms
of the logic are justified by at least one justification constant. Another is that
the logic has a schematic constant specification, which means that each constant
justifies a certain number of axiom schemes (perhaps none) and nothing else.
Finally, the third assumption is that the constant specification is schematically
injective, that is, it is schematic and each constant justifies at most one scheme.

It is known that for (single-agent) justification logics J, JT, J4, and LP, the
satisfiability problem is in Σp

2 for a schematic constant specification ([12]) and for
JD, JD4, the satisfiability problem is in Σp

2 for an axiomatically appropriate and
schematic constant specification ([13, 1]). As for the lower bounds, Milnikel has
proven ([17]) that J4-satisfiability is Σp

2 -hard for an axiomatically appropriate
and schematic constant specification and that LP-satisfiability is Σp

2 -hard for
an axiomatically appropriate, (schematic,) and schematically injective constant
specification. Following that, Buss and Kuznets gave a general lower bound in [8],
proving that for all the above logics, satisfiability is Σp

2 -hard for an axiomatically
appropriate, (schematic,) and schematically injective constant specification. This
raised the question of whether the condition that the constant specification is
schematically injective is a necessary one, which is answered in this paper.2

We present a general lower bound, which applies to all logics from [4]. This
includes all the single-agent logics whose complexity was studied in [12, 13, 8, 1].
In fact, Buss and Kuznets gave the same general lower bound for all the single-
agent cases in [8] and it is reasonable to expect that we could simply apply their
techniques and achieve the same result in this general multi-agent setting. Our
method, however, presents the following two advantages: it is a relatively simple
reduction, a direct simplification of the more involved NEXP-hardness reduction
and very similar to Milnikel’s method from [17]; it is also an improvement of
their result, even if it does not improve the bound itself in that for our results
the requirements are that the constant specification is axiomatically appropriate

2 The answer is ‘no’.
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and schematic – and not that it is schematically injective as well. In particular
this means that we provide for the first time a tight lower bound for the full
LP (LP where all axioms are justified by all constants). The disadvantage of our
method is that, unlike the one of Buss and Kuznets, it cannot be adjusted to
work on the reflected fragments of justification logic, the fragment which includes
only the formulas of the form t :φ.

2 Background

We present the family of multiagent justification logics from [4], its semantics
and ∗-calculus, and notation we will be using. The definitions and propositions
in this section can be found in [3, 4].

2.1 Syntax and Axioms

The justification terms of the language Ln include constants c1, c2, c3, . . . and
variables x1, x2, x3, . . . and t ::= x | c | [t+ t] | [t · t] |!t. The set of terms is called
Tm. The n agents are represented by the positive integers i ∈ N = {1, . . . , n}.
The propositional variables will usually (but not always, as will be evident in
the following section) be p1, p2, . . .. Formulas of the language Ln are defined:
φ ::= ⊥ | p | ¬φ | φ → φ | φ ∧ φ | φ ∨ φ | t :i φ, but depending on convenience
we may treat some connectives as constructed from others. We are particularly
interested in rLn = {t :i φ ∈ Ln}. Intuitively, · applies a justification for a
statement A → B to a justification for A and gives a justification for B. Using
+ we can combine two justifications and have a justification for anything that
can be justified by any of the two initial terms – much like the concatenation
of two proofs. Finally, ! is a unary operator called the proof checker. Given a
justification t for φ, !t justifies the fact that t is a justification for φ.

If ⊂, →֒ are binary relations on the agent set {1, . . . , n} and for every agent
i, F (i) is a (single-agent) justification logic (we assume F (i) ∈ {J, JD, JT}), then
justification logic J = (n,⊂, →֒, F )CS has the axioms as seen on Table 2.1 and
modus ponens. The binary relations ⊂, →֒ determine the interactions among
the agents: ⊂ determines the instances of the Conversion axiom, while →֒ the
instances of the Verification axiom, so if i ⊂ i, then the justifications of agent j
are also valid justifications for agent i (i.e. we have axiom t :j φ→ t :iφ), while if
i →֒ i, then the justifications of agent j can be verified by agent i (i.e. we have
axiom t :j φ→!t :i t :j φ). F assigns a single-agent justification logic to each agent.
We would assume F (i) is one of J, JD, JT, J4, JD4, and LP, but since Positive
introspection is a special case of Verification, we can limit the choices for F (i) to
logics without Positive Introspection (i.e. J, JD, and JT). CS is called a constant
specification. It introduces justifications for the axioms and is explained in Table
2.1 together with the axioms. We also define i ⊃ j iff j ⊂ i and i ←֓ j iff j →֒ i.

In this paper we will be making the assumption that the constant speci-
fications are axiomatically appropriate: each axiom is justified by at least one
constant; and schematic: every constant justifies only a certain number (0 or
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General axioms (for every agent i):

Propositional Axioms: Finitely many schemes of classical propositional logic;
Application: s :i (φ→ ψ)→ (t :iφ→ [s · t] :iψ);
Concatenation: s :iφ→ [s+ t] :iφ, s :iφ→ [t+ s] :iφ.

Agent-dependent axioms (depending on F (i)):

Factivity: for every agent i, such that F (i) = JT, t :iφ→ φ;
Consistency: for every agent i, such that F (i) = JD, t :i⊥ → ⊥.

Interaction axioms (depending on the binary relations ⊂ and →֒):

Conversion: for every i ⊃ j, t :iφ→ t :j φ;
Verification: for every i ←֓ j, t :iφ→!t :j t :iφ.

A constant specification for (n,⊂, →֒, F ) is any set of formulas of the form c :iA, where
c a justification constant, i an agent, and A an axiom of the logic from the ones above.
We say that axiom A is justified by a constant c for agent i when c :iA ∈ CS.

Axiom Necessitation (AN): t :i φ, where either t :i φ ∈ CS or t =!s and φ = s :j ψ
an instance of Axiom Necessitation.

Table 1. The axioms of (n,⊂, →֒, F )CS

more) of the logic’s axiom schemes (Table 2.1) – as a result, every constant jus-
tifies a finite number of axiom schemes, but either 0 or infinite axioms, while if
c justifies A for i and B results from A and substitution, then c justifies B for i.

We use the following notation and conventions: For justification terms t1, . . . , tk
and formulas φ1, . . . , φk, term [t1+t2+· · ·+tk] is defined as [[t1+t2+· · ·+tk−1]+tk],
[t1 · t2 · · · tk] is defined as [[t1 · t2 · · · tk−1] · tk], and (φ1 ∧ φ2 ∧ · · · ∧ φk) as
((φ1∧φ2∧· · ·∧φk−1)∧φk) when k > 2. We often identify conjunctions of formu-
las with sets of such formulas, as long as these can be used interchangeably. For
set of indexes A and Φ = {ta :ia φa | a ∈ A}, we define Φ

#i = {φa | a ∈ A, ia = i}
and ∗Φ = {∗ia(ta, φa) | a ∈ A}. Often we identify 0, 1 with ⊥,⊤ respectively, as
long as it is not a source of confusion.

Lemma 1 (Internalization Property, [4], but originally [5]). For an ax-
iomatically appropriate constant specification CS, if ⊢ φ, then for any i ∈ N
there is some term t such that for any φ′ substitution instance of φ, ⊢ t :iφ

′.

Proof (Quick sketch). By induction on the proof of φ: easy by AN if φ is an
axiom and using the application axiom if φ is the result of modus ponens. ⊓⊔

The Internalization Property demonstrates three important points. One is
that a theorem’s proof can be internalized as a justification for that theorem.
Another point is that Modal Logic’s Necessitation rule survives in Justification
Logic – in a weakened form as an axiom and in its full form as a property of
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the logic. The third point is the importance of the assumption that the constant
specification is axiomatically appropriate as it is necessary for the lemma’s proof.

2.2 Semantics

We present Fitting (F-) models for J = (n,⊂, →֒, F )CS . These are Kripke models
with an additional machinery (an admissible evidence function) to accommodate
justification terms. They were introduced by Fitting in [10] with variations ap-
pearing in [19, 14].

Definition 1. An F-model M for J is a quadruple (W, (Ri)i∈N , (Ei)i∈N ,V),
where W 6= ∅ is a set, for every i ∈ N , Ri ⊆ W 2 is a binary relation on W ,
V : Pvar −→ 2W and for every i ∈ N , Ei : (Tm× Ln) −→ 2W . W is called the
universe ofM and its elements are the worlds or states of the model. V assigns
a subset of W to each propositional variable, p, and Ei assigns a subset of W to
each pair of a justification term and a formula. (Ei)i∈N is often seen and referred
to as E : N × Tm× Ln −→ 2W and E is called an admissible evidence function
(aef). Additionally, for any i ∈ N , formulas φ, ψ, and justification terms t, s, E
and (Ri)i∈N must satisfy the following conditions:

Application closure: Ei(s, φ→ ψ) ∩ Ei(t, φ) ⊆ Ei(s · t, ψ).
Sum closure: Ei(t, φ) ∪ Ei(s, φ) ⊆ Ei(t+ s, φ).
AN-closure: for any instance of AN, t :iφ, Ei(t, φ) =W .
Verification Closure: If i →֒ j, then Ej(t, φ) ⊆ Ei(!t, t :iφ)
Conversion Closure: If i ⊂ j, then Ej(t, φ) ⊆ Ei(t, φ)
Distribution: for j →֒ i and a, b ∈ W , if aRjb and a ∈ Ei(t, φ), then b ∈ Ei(t, φ).

3

– If F (i) = JT, then Ri must be reflexive.
– If F (i) = JD, then Ri must be serial (∀a ∈W ∃b ∈W aRib).
– If i →֒ j, then for any a, b, c ∈W , if aRibRjc, we also have aRjc.

4

– For any i ⊂ j, Ri ⊆ Rj.

Truth in the model is defined in the following way, given a state a:

– M, a 6|= ⊥ and if p is a propositional variable, thenM, a |= p iff a ∈ V(p).
– M, a |= φ→ ψ if and only if M, a |= ψ, or M, a 6|= φ.
– M, a |= t :iφ if and only if a ∈ Ei(t, φ) andM, b |= φ for all aRib.

A formula φ is called satisfiable if there areM, a |= φ; we then say thatM
satisfies φ in a. A pair (W, (Ri)i∈N ) as above is a frame for (n,⊂, →֒, F )CS . We
say thatM has the Strong Evidence Property whenM, a |= t :iφ iff a ∈ Ei(t, φ).
J is sound and complete with respect to its F-models;5 it is also complete with
respect to F-models with the Strong Evidence property. Furthermore, J has a

3 If we have M, a |= t :i φ – and thus a ∈ Ei(t, φ) – we also want M, a |=!t :j t :i φ to
happen and therefore alsoM, b |= t :iφ – so b ∈ Ei(t, φ) must be the case as well.

4 Thus, if i has positive introspection (i.e. i →֒ i), then Ri is transitive.
5 That CS is axiomatically appropriate is a requirement for completeness.
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“small” model property, as Proposition 1 demonstrates. Completeness is proven
in [3, 4] by a canonical model construction with maximally consistent sets of for-
mulas as states; Proposition 1 is then proven by a modification of that canonical
model construction that depends on the particular satisfiable formula φ.

Proposition 1 ([3, 4]). If φ is J-satisfiable, then φ is satisfiable by an F-model
for J of at most 2|φ| states which has the strong evidence property.

2.3 The ∗-calculus.

The ∗-calculus gives an axiomatization of rJ = {φ ∈ rLn | J ⊢ φ}, the reflected
fragment of J . It is an invaluable tool in the study of the complexity of Justi-
fication Logic and when we handle aefs and formulas in rLn. A ∗-calculus was
introduced in [11], but its origins can be found in [18].

If t is a term, φ is a formula, and i ∈ N , then ∗i(t, φ) is a ∗-expression. Given
a frame F = (W, (Ri)i∈N ) for J , the ∗F -calculus for J is the derivation system
on ∗-expressions prefixed by states from W (∗F -expressions from now on) with
the axioms and rules that are shown in Table 2.3.

∗CS(F) Axioms: w ∗i (t, φ), where t :i φ
an instance of AN

∗App(F):

w ∗i (s, φ→ ψ) w ∗i (t, φ)

w ∗i (s · t, ψ)

∗Sum(F):

w ∗i (t, φ)

w ∗i (s+ t, φ)

w ∗i (s, φ)

w ∗i (s+ t, φ)

∗ →֒ (F): For any i ←֓ j,

w ∗i (t, φ)

w ∗j (!t, t :iφ)

∗ ⊂ (F): For any i ⊃ j,

w ∗i (t, φ)

w ∗j (t, φ)

∗ →֒Dis(F): For any i ←֓ j, (a, b) ∈ Rj ,

a ∗i (t, φ)

b ∗i (t, φ)

Table 2. The ∗F -calculus for J : where F = (W, (Ri)i∈N) and for every i ∈ N

For Φ ⊆ rLn, the ∗-calculus (without a frame) for J can be defined as Φ ⊢∗ e
if for every frame F , state w of F , {w e | e ∈ ∗Φ} ⊢∗F w ∗i (t, φ). Notice that for
any v, w, if {w e | e ∈ ∗Φ} ⊢∗F v ∗i (t, φ), then {w e | e ∈ ∗Φ} ⊢∗F w ∗i (t, φ),
therefore the ∗-calculus is the resulting calculus on ∗-expressions after we ignore
the frame and world-prefixes (and thus rule ∗ →֒Dis(F)) in Table 2.3. For an aef
E , we write E |= w ∗i (t, φ) when w ∈ Ei(t, φ); for set Φ of ∗F - (or ∗-)expressions,
E |= Φ when E |= e for every e ∈ Φ. If E |= e, we may say that E satisfies e.

Proposition 2 ([4], but originally [11, 13]).

1. Let Φ ⊆ rLn. Then, ∗Φ ⊢∗ e iff for any aef E |= ∗Φ, E |= w e .
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2. For frame F , set of ∗F -expressions Φ, Φ ⊢∗F e iff E |= e for every aef E |= Φ.

Proof. For 2, notice that the calculus rules correspond to the closure conditions
of the aef, so if Em |= e6 iff Φ ⊢∗F e, then Em is an aef, so the “if” direction
is established; by induction on the calculus derivation, we can also establish for
every aef E , if Em |= e, then E |= e. 1 is a direct consequence. ⊓⊔

Proposition 3 ([4], but originally [11, 13]). If CS ∈ P and is schematic, the
following problems are in NP:

1. Given a finite frame F , a finite set S ∪ {e} of ∗F -expressions, is it the case
that S ⊢∗F e?

2. Given a finite set S ∪ {e} of ∗-expressions, is it the case that S ⊢∗ e?

The shape of a ∗-calculus derivation is mostly described by t. We can use t
to extract the general shape of the derivation – the term keeps track of the
applications of all rules besides ∗ ⊂ and ∗ →֒Dis. We can then plug in to the
leaves of the derivation either axioms of the calculus or members of S and unify
(CS is schematic, so the derivation includes schemes) trying to reach the root.
Using Propositions 3 and 1, we can conclude with Corollary 1.

Corollary 1 ([4], but 1 was originally proven in [11]).

1. If CS ∈ P and is schematic, then deciding for t :iφ that J ⊢ t :iφ is in NP.
2. If CS ∈ P and is schematic and axiomatically appropriate, then the satisfia-

bility problem for J is in NEXP.

3 A Universal Lower Bound

The main result of this section can be found in Theorem 1 and is a lower bound
for the complexity of J-satisfiability, for an arbitrary multiagent justification
logic J , given an axiomatically appropriate, schematic constant specification.
We give the theorem first and then its proof.

Theorem 1. If J has an axiomatically appropriate and schematic constant spec-
ification, then J-satisfiability is Σp

2 -hard.

Kuznets proved in [12] that, under a schematic constant specification, satisfi-
ability for J, JT, J4, and LP is in Σp

2 – an upper bound which was also successfully
established later for JD [15] and JD4 [1] under the assumption of a schematic
and axiomatically appropriate constant specification. In that regard, the lower
bound of Theorem 1 is optimal. Kuznets’ algorithm is composed of a tableau
procedure which analyzes signed formulas of the form T φ, intuitively meaning
that φ is true in the constructed model, and F φ, meaning that φ is false, with
respect to their propositional connectives (and from T t :i φ gives T φ in the

6 E |= e has only been defined for aefs, but we slightly abuse the notation for conve-
nience.
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presence of Factivity). Eventually it produces formulas of the form T p, F p,
T ∗ (t, φ), and F ∗ (t, φ), where T ∗ (t, φ) means that the aef of the constructed
model makes (t, φ) true. The tableau process so far takes polynomial time and
makes nondeterministic choices to break the propositional connectives and con-
struct a specific branch. Then we need to make sure that there is a model (E ,V)
such that E(t, φ) = true if T ∗ (t, φ) is in the branch, E(t, φ) = false if F ∗ (t, φ)
is in the branch, V(p) = true if T p is in the branch, and V(p) = false if F p is
in the branch. The propositional variable part is easy to check – just check that
not both T p and F p are in the branch. The aef part is harder to verify, but the
branch can give a valid aef if and only if from all ∗-expressions e, where T e is
in the branch we cannot deduce some ∗-expression f using the ∗-calculus, where
F f in the branch. By Proposition 3, this can be verified using an NP-oracle.

The idea behind the reduction we use to prove Theorem 1 is very similar to
Milnikel’s proof of Πp

2 -completeness for J4-provability [17] (which also worked
for J-provability). Both Milnikel’s and our reduction are from QBF2. The main
difference has to do with the way each reduction transforms (or not) the QBF
formula. Milnikel uses the propositional part of the QBF formula as it is and
he introduces existential nondeterministic choices on a satisfiability-testing pro-
cedure (think of Kuznets’ algorithm as described above) using formulas of the
form x : p ∨ y :¬p and universal nondeterministic choices using formulas of the
form x :p ∧ y :¬p and term [x + y] in the final term, forcing a universal choice
between x and y during the ∗-calculus testing.

This approach works well for J and J4, but it fails in the presence of the
Consistency or Factivity axiom, as x : p ∧ y :¬p becomes inconsistent. For the
case of LP, he used a different approach and made use of his assumption of
a schematically injective constant specification (i.e. that all constants justify at
most one scheme) to construct a term t to specify an intended proof of a formula
of the form

∧

i(x : p ∧ y :¬p) → s :ψ – which is always provable, since the left
part of the implication is inconsistent. In this paper we bypass the problem of
the inconsistency of x : p ∧ y : ¬p by replacing each propositional formula by
two corresponding propositional variables, [χ]⊤ and [χ]⊥ to correspond to “χ is
true” and to “χ is false” respectively. Therefore, we use x : [p]⊤ ∧ y : [p]⊥ instead
of x :p∧ y :¬p and we have no inconsistent formulas. As a side-effect we need to
use several extra formulas to encode the behavior of the formulas with respect
to a truth-assignment – for instance, [p]⊤ → [p ∨ q]⊤ is not a tautology, so we
need a formula to assert its truth (see the definitions of Evalj below).

Buss and Kuznets in [8] use the same assumption as Milnikel on the constant
specification to give a general lower bound by a reduction from Vertex Cover
and a Σp

2 -complete generalization of that problem. Their construction has the
advantage that it additionally proves an NP-hardness result for the reflected
fragment of the logics they study, while ours does not. On the other hand we
do not require a schematically injective constant specification, as, much like
Milnikel’s construction for J4, we do not need to limit a ∗-calculus derivation.

Lemma 2 is a simple observation on the resources (number of assumptions)
used by a ∗-calculus derivation: if there is a derivation of ∗i(t, φ) and t only has
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one appearance of term s, then the derivation uses at most one premise of the
form ∗j(s, ψ). In fact, this observation can be generalized to k appearances of s
using at most k premises, but this is not important for the proof of Theorem 1.

Lemma 2. Let i be an agent, φ a justification formula, t a justification term in
which ! does not appear, and s a subterm of t which appears at most once in t.
Let Ss = {s :iφ1, . . . , s :iφk} and S ⊂ rLn, such that S ∪ Ss is consistent. Then,
S∪Ss ⊢ t :iφ if and only if there is some 1 ≤ a ≤ k such that S∪{s :iφa} ⊢ t :iφ.

Proof. Easy, by induction on the ∗-calculus derivation (on t). ⊓⊔

The proof of Theorem 1 is by reduction from QBF2, which is the following
(Σp

2 -complete) problem: given a Quantified Boolean Formula,

φ = ∃x1∃x2 · · · ∃xk∀y1∀y2 · · · ∀yk′ψ,

where ψ is a propositional formula on variables x1, . . . , xk, y1, . . . , yk′ , is φ true?
That is, are there truth-values for x1, . . . , xk, such that for all truth-values for
y1, . . . , yk′ , a truth-assignment that gives these values makes ψ true?

As mentioned above, for every ψa ∈ Ψ , let [ψa]
⊤, [ψa]

⊥ be new propositional
variables. As we argued earlier, we need formulas to help us evaluate the truth of
variables under a certain valuation in a way that matches the truth of the original
formula, ψ – [ψ]⊥ → [¬ψ]⊤ for instance. These kinds of formulas (prefixed by a
corresponding justification term) are gathered into S(φ). T J(φ) is constructed
in such a way that under the formulas of S(φ) and given a valuation v

∧

v(pa)=true

xa :i [pa]
⊤ ∧

∧

v(pa)=false

xa :i [pa]
⊥ ∧ S(φ) ⊢ T J(φ) :i [φ]

⊤

if and only if v makes φ true. In other words, T J(φ) encodes the method we
would use to evaluate the truth value of φ.

To construct T J(φ), we first need certain justification terms to encode needed
operations to manipulate formulas. We will often need to work on long con-
juncts like (φ1 ∧ · · · ∧ φr), which we can view as a string of formulas. Therefore
we need operations like projections (projrx), appending a formula (append), ap-
pending a formula to a hypothesis (hypappend), appending the conclusions of
two implications (appendconc), and so on. We start by providing these terms.

We define terms projrx (for x ≤ r), append, hypappend, and appendconc, to
be such that

t :i (φ1 ∧ φ2 ∧ · · · ∧ φr) ⊢ [projrx · t] :iφx,

t :iφ1, s :iφ2 ⊢ [append · t · s] :i (φ1 ∧ φ2),

t :i (φ1 → φ2) ⊢ [hypappend · t] :i (φ1 → φ1 ∧ φ2), and

t :i (φ1 → φ2), s :i (φ1 → φ3) ⊢ [appendconc · t · s] :i (φ1 → φ2 ∧ φ3),

append, hypappend, and appendconc can simply be any terms such that

⊢ append :i (φ1 → (φ2 → φ1 ∧ φ2)),

9



⊢ hypappend :i ((φ1 → φ2)→ (φ1 → φ1 ∧ φ2)), and

⊢ appendconc :i ((φ1 → φ2)→ ((φ1 → φ3)→ (φ1 → φ2 ∧ φ3))).

Such terms exist, because they justify propositional tautologies and the con-
stant specification is schematic and axiomatically appropriate (see Lemma 1).
To define projrx, we need terms left, right, id, tran, so that

⊢ left :i (φ1 ∧ φ2 → φ1), ⊢ right :i (φ1 ∧ φ2 → φ2),

⊢ id :i (φ1 → φ1), and

⊢ tran :i ((φ1 → φ2)→ ((φ2 → φ3)→ (φ1 → φ3)).

Again, such terms exist, because they justify propositional tautologies. Then,
proj11 = id; for r > 1, projrr = right; and for l < r, projr+1

l = [trans·left·projrl ].

Now we provide the formulas that will help us with evaluating the truth of the
propositional part of the QBF formula under a valuation. These were axioms
provided by the constant specification in Milnikel’s proof [17], but as we argued
before, we need the following formulas in our case. Let Ψ = {ψ1, . . . , ψl} be
an ordering of all subformulas of ψ, such that if a < b, then |ψa| ≤ |ψb|7.
Furthermore, ρ = |{χ ∈ Ψ | |χ| = 1}| and for every 1 ≤ j ≤ l,

if ψj = ¬γ, then Evalj = truthj :i ([γ]
⊤ → [ψj ]

⊥) ∧ truthj :i ([γ]
⊥ → [ψj ]

⊤);

if ψj = γ ∨ δ, then

Evalj = truthj :i ([γ]
⊤ ∧ [δ]⊤ → [ψj ]

⊤) ∧ truthj :i ([γ]
⊤ ∧ [δ]⊥ → [ψj ]

⊤)

∧truthj :i ([γ]
⊥ ∧ [δ]⊤ → [ψj ]

⊤) ∧ truthj :i ([γ]
⊥ ∧ [δ]⊥ → [ψj ]

⊥);

if ψj = γ ∧ δ, then

Evalj = truthj :i ([γ]
⊤ ∧ [δ]⊤ → [ψj ]

⊤) ∧ truthj :i ([γ]
⊤ ∧ [δ]⊥ → [ψj ]

⊥)

∧truthj :i ([γ]
⊥ ∧ [δ]⊤ → [ψj ]

⊥) ∧ truthj :i ([γ]
⊥ ∧ [δ]⊥ → [ψj ]

⊥);

if ψj = γ → δ, then

Evalj = truthj :i ([γ]
⊤ ∧ [δ]⊤ → [ψj ]

⊤) ∧ truthj :i ([γ]
⊤ ∧ [δ]⊥ → [ψj ]

⊥)

∧truthj :i ([γ]
⊥ ∧ [δ]⊤ → [ψj ]

⊤) ∧ truthj :i ([γ]
⊥ ∧ [δ]⊥ → [ψj ]

⊤).

7 assume a | · |, such that |pj | = 1 and if γ is a proper subformula of δ, then |γ| < |δ|
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We now construct term T J(φ). To do this we first construct terms T a, where
1 ≤ a ≤ l. Given a valuation v in the form x1 :i [p1]

v1 , . . . , xk :i [pk]
vk , T 1 through

T k simply gather these formulas in one large conjunct (or string). Then for
k+ 1 ≤ a ≤ l, T a evaluates the truth of ψa, resulting in either [ψ]⊤ or [ψ]⊥ and
appending the result at the end of the conjunct.

Let T 1 = x1 and for every 1 < a ≤ k, T a = [append · T a−1 · xa]. It is not
hard to see that for v1, . . . , vk ∈ {⊤,⊥},

x1 :i [p1]
v1 , . . . , xk :i [pk]

vk ⊢ T k :i ([p1]
v1 ∧ · · · ∧ [pk]

vk). (1)

If ψa = ¬ψb, then

T a = hypappend · [trans · proja−1
b · trutha] · T

a−1 and

if ψa = ψb ◦ ψc, then

T a = hypappend · [trans · [appendconc · proja−1
b · proja−1

c ] · trutha] · T
a−1.

Let
S(φ) =

∧

ρ<j≤l

Evalj

and given a truth valuation v, let

Sv(φ) =
∧

v(pj)=true

xj :i [pj ]
⊤ ∧

∧

v(pj)=false

xj :i [pj ]
⊥ ∧

∧

ρ<j≤l

Evalj .

By induction on a, for every truth assignment v,

Sv(φ) ⊢ T a :i ([ψ1]
v1 ∧ · · · ∧ [ψa]

va),

where if ψb is true under v, then vb = ⊤ and vb = ⊥ otherwise. The cases
where a ≤ k are easy to see from (1). For the remaining cases it is enough to
demonstrate that
if ψa = ¬ψj , then S(φ) ⊢ [trans · proja−1

j · trutha · T a−1] :i [ψa]
va and

if ψa = ψb ◦ ψc, then

S(φ) ⊢ [trans · [appendconc · proja−1
b · proja−1

c ] · trutha · T
a−1] :i [ψa]

va ,

which is not hard to see by the way we designed each term.
Finally, let T J(φ) = [right · T l]. We can now prove Lemma 3:

Lemma 3. For every n ∈ N and agent i ∈ N , T J(φ), S(φ) are computable in
polynomial time with respect to |φ|. φ is true under truth assignment v if and
only if

∧

v(pa)=true

xa :i [pa]
⊤ ∧

∧

v(pa)=false

xa :i [pa]
⊥ ∧ S(φ) ⊢ T J(φ) :i [φ]

⊤.

11



Proof. From the above construction we can see that if φ is true under v then
Sv(φ) ⊢ T J(φ) :i [φ]⊤. On the other hand, if Sv(φ) ⊢ T J(φ) :i [φ]⊤, then
∗Sv(φ) ⊢∗ ∗i([right · T

l], [φ]⊤), which in turn gives (Sv(φ))#i ⊢ [φ]⊤ (the terms
do not include the operator ! and thus the right side of a ∗-derivation is a
derivation in propositional logic). If φ is not true under v, then let v′ be the
valuation, such that v′([ψ]⊤) = true iff ψ is true under v and v′([ψ]⊥) = true
iff ψ is false under v. Then all of (Sv(φ))#i is true under v′ and [φ]⊤ is not,
therefore(Sv(φ))#i 6⊢ [φ]⊤, so Sv(φ) 6⊢ T J(φ) :i [φ]⊤. ⊓⊔

Corollary 2. The QBF formula ∃p1, . . . , pk∀pk+1, . . . , pk+lφ is true if and only
if the following formula is J-satisfiable:

k
∧

j=1

(xj :i [pj ]
⊤∨xj :i [pj ]

⊥)∧
l
∧

j=k+1

(xj :i [pj ]
⊤∧xj :i [pj]

⊥)∧S(¬φ)∧¬T J (¬φ)[¬φ]⊤ .

Proof. If

k
∧

j=1

(xj :i [pj ]
⊤∨xj :i [pj ]

⊥)∧
l
∧

j=k+1

(xj :i [pj ]
⊤∧xj :i [pj ]

⊥)∧S(¬φ)∧¬T J (¬φ)[¬φ]⊤

is not satisfiable, then

k
∧

j=1

(xj :i [pj ]
⊤∨xj :i [pj]

⊥)∧
l
∧

j=k+1

(xj :i [pj]
⊤∧xj :i [pj]

⊥)∧S(¬φ) ⊢ T J(¬φ)[¬φ]⊤ ,

and then for every choice c1 : {1, . . . , k} −→ {⊤,⊥},

k
∧

j=1

(xj :i [pj ]
c1(j)) ∧

l
∧

j=k+1

(xj :i [pj ]
⊤ ∧ xj :i [pj]

⊥) ∧ S(¬φ) ⊢ T J(¬φ)[¬φ]⊤ ,

and then since every variable from x1, . . . , xk+l appears at most once in T J and
T J does not include !, by Lemma 2 there is some choice c2 : {1, . . . , l} −→ {⊤,⊥}
such that

k
∧

j=1

(xj :i [pj ]
c1(j)) ∧

l
∧

j=k+1

(xj :i [pj]
c2(j)) ∧ S(¬φ) ⊢ T J(¬φ)[¬φ]⊤ .

Therefore, for every assignment of truth-values on p1, . . . , pk there truth-values
for pk+1, . . . , pl+k that make φ false.

On the other hand, if

k
∧

j=1

(xj :i [pj ]
⊤∨xj :i [pj ]

⊥)∧
l
∧

j=k+1

(xj :i [pj ]
⊤∧xj :i [pj ]

⊥)∧S(¬φ)∧¬T J (¬φ)[¬φ]⊤
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is satisfiable, then there is some choice c1 : {1, . . . , k} −→ {⊤,⊥}, such that

k
∧

j=1

(xj :i [pj ]
c1(j)) ∧

l
∧

j=k+1

(xj :i [pj ]
⊤ ∧ xj :i [pj]

⊥) ∧ S(¬φ) ∧ ¬T J(¬φ)[¬φ]⊤

is satisfiable, and then since every variable from x1, . . . , xk+l appears at most
once in T J , for every choice c2 : {1, . . . , l} −→ {⊤,⊥},

k
∧

j=1

(xj :i [pj ]
c1(j)) ∧

l
∧

j=k+1

(xj :i [pj]
c2(j)) ∧ S(¬φ) 6⊢ T J(¬φ)[¬φ]⊤ .

Therefore, there is some truth assignment on p1, . . . , pk such that every truth
assignment on pk+1, . . . , pl+k makes φ true. ⊓⊔

Theorem 1 is then a direct corollary of the above.

4 A NEXP-complete Justification Logic

The justification logic we prove to have a NEXP-complete satisfiability problem
is the 4-agent logic JH = (4,⊂, →֒, F )CS , where

– ⊂= {(3, 4)},
– ←֓= {(1, 2), (2, 3), (4, 4)},
– F (1) = F (2) = J, F (3) = F (4) = JD, and
– CS is any axiomatically appropriate and schematic constant specification.

The agents of JH are based on justification logics J and JD – and essentially
JD4, as agent 4 has Positive Introspection. Agent 3 has a significant variety of
justifications. Since 1 ←֓ 2 ←֓ 3, 3 is aware of the justifications of 2, who in turn is
aware of the justifications of 1. Therefore, 3 can simulate the reasoning of 2 who
can simulate the reasoning of 1. Additionally, 3 accepts two types of justifications:
the ones 3 receives from 4, which come with Positive Introspection and the
other ones 3 accepts, which do not. As Theorem 2 demonstrates, this complex
interaction among agent 3’s justifications results in the significant hardness of
JH -satisfiability.

If we only focus on agents 3 and 4, we have a PSPACE-complete justification
logic [3, 4]. In a tableau procedure which constructs a model for a given formula
(like the one in [4]), this means that we may have to consider a large number of
states. If we could simply explore smaller parts of the model as we can often do
for Modal Logic, we could still end up with an (alternating perhaps) polynomial
space algorithm. The satisfiability-testing procedures for Justification Logic have
another part, though, and that is testing whether certain ∗F -expressions can be
derived in a frame F from a certain set of ∗F -expressions using the ∗-calculus –
which corresponds to asking whether there is an aef that satisfies certain expres-
sions and not others. By Proposition 3, this can be done using a nondeterministic
procedure which takes time polynomial with respect to |F| and to the overall
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size of the set of ∗F -expressions. Although the complexity of that procedure
is not something which increases the overall complexity of satisfiability-testing
[4], to run it we must keep the whole frame F in memory and F can be large,
which requires exponential time and more than polynomial space. Nondetermin-
ism is introduced as we apply the tableau rules, as some require nondeterministic
choices. Assuming PSPACE 6= NEXP, this is a difficulty we cannot overcome.

Theorem 2. JH-satisfiability is NEXP-hard.

The reduction we use is from a subproblem of the SCHÖNFINKEL-BERNAYS
SAT problem, which we call BINARY SCHÖNFINKEL-BERNAYS SAT:

Given a first-order formula φ of the form ∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ, where
ψ contains no quantifiers or function symbols, is φ satisfiable by a first-
order model of exactly two elements?

The general SCHÖNFINKEL-BERNAYS SAT problem does not require that a
satisfying model has exactly two elements and is known to be NEXP-complete
[16]; BINARY SCHÖNFINKEL-BERNAYS SAT remains NEXP-complete.

The reduction for Theorem 2 is essentially an extended version of the reduc-
tion we used to prove Theorem 1. Like then, consider a construction of a satisfy-
ing model, only this time it is an F-model with several states and accessibility re-
lations for agents. Another difference is, of course, that now the original formula
is from the first-order language. However, in the BINARY SCHÖNFINKEL-
BERNAYS SAT formulation, each (first-order) variable is quantified over two
possible values (the elements of the two-element model), so they are essentially
propositional variables. Since this is satisfiability we must existentially quantify
each relation symbol over all 2r+1 r-ary relations. We can encode such a nonde-
terministic choice by forcing the existence of an exponential number of states,
each representing one r-tuple v = v1, . . . , vr of the two possible values 0 and 1
(as mentioned above, we can do this using agents 3 and 4) by having var :1 [pa]

va

being true and then at each such state enforce the choice between rel :1 [R]
⊤ and

rel :1 [R]
⊥, meaning that v ∈ R or v /∈ R respectively – where R an actual rela-

tion. In such a state conjunctions of the form gather :1 ([p1]
v1 ∧· · ·∧ [pr]vr ∧ [R]△)

(where △ = ⊤ or ⊥) encode this choice. Due to the particular interaction
among the agents and the logics they are based on, in the constructed model
gather :1 ([p1]

v1∧· · ·∧[pr]vr∧[R]△) is true in a state if and only if that state repre-
sents v and △ = ⊤ iff v ∈ R. Already this JH -model encodes a first-order model.
The trick now is to be able to gather in one state all these formulas that encode
the relations through the aef closure conditions (i.e. through the ∗-calculus), but
making sure that individual conjuncts (i.e. something of the form var :1 [p]

△ or
rel :1 [R]△) cannot be also transfered to that state through the calculus – in
that case we would be able to construct gather :1 ([p1]

v1 ∧ · · · ∧ [pr]
vr ∧ [R]△)

for additional, invalid combinations of (v,△). This is achieved by considering
formulas of the form !gather :2 gather :1 ([p1]

v1 ∧ · · · ∧ [pr]
vr ∧ [R]△). The con-

structed model has empty accessibility relations for agents 1 and 2, thus such
formulas can move freely through the accessibility relation of agent 3 (since
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2 ←֓ 3 and because of Distribution), but this is not the case for anything of the
form t :1χ (since 1 6←֓ 3, 4). Using certain additional formulas we can make sure
that !gather :2 gather :1 ([p1]

v1 ∧ · · · ∧ [pr]
vr ∧ [R]△)→ [R(x1, . . . , xr)]

△ becomes
true if and only if x1, . . . , xr are interpreted as v1, . . . , vr. The remaining of the
formulas and methods we use are very similar to the ones we use for Theorem 1.

By combining Corollary 1 and Theorem 2, we can claim the following:

Corollary 3. JH-satisfiability is NEXP-complete.

4.1 Proof of Theorem 2

The reduction we use is from (a variation of) the SCHÖNFINKEL-BERNAYS
SAT problem: given a first-order formula φ of the form

∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ,

where ψ contains no quantifiers or function symbols, is φ satisfiable by a first-
order model?

SCHÖNFINKEL-BERNAYS SAT is known to be NEXP-complete ([16]). Fur-
thermore, it is not hard to see that if

∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ,

is satisfiable, then it is satisfiable by a model of at most k elements. For the
coming reduction, we instead use for convenience a simplified version of this
problem, which we call BINARY SCHÖNFINKEL-BERNAYS SAT and is the
same problem, only instead we ask if ∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ is satisfiable by a
first-order model of exactly two elements.

For the reductions that follow we use the following notation: for a non-
negative integer x ∈ N, let bin(x) = bin0(g), . . . , binlog g(g) be its binary repre-
sentation. Furthermore, like in Section 3, for every propositional and first-order
formula ψ we introduce propositional variables [ψ]⊤ and [ψ]⊥.

Lemma 4. BINARY SCHÖNFINKEL-BERNAYS SAT is NEXP-complete.

Proof. Let φ be a first-order formula of the form

∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ,

where ψ contains no quantifiers or function symbols. Furthermore, we assume

that ψ contains no constants. We can replace each xa by xa = x1a, x
2
a, . . . , x

⌈log k⌉
a

and each yb by yb = y1b , y
2
b , . . . , y

⌈log k⌉
b in the quantifiers and wherever they

appear in a relation. Therefore ∃xa is replaced by ∃x1a∃x
2
a · · · ∃x

⌈log k⌉
a (∃xa for

short) and ∀xa is replaced by ∀x1a∀x
2
a · · · ∀x

⌈log k⌉
a (∀ya for short) andR(z1, . . . , zr)

is replaced by R(z1, . . . , zr). Furthermore, every expression z = z′ where z, z′
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are variables, is replaced by
∧

1≤a≤⌈log k⌉ z
a = z′a (z = z′ for short). The result

of all these replacements in ψ is called ψ′. The new formula is:

φ′ = ∃x1 · · · ∃xk∀y1 · · · ∀yk′





k′
∧

b=1

k
∨

a=1

xa = yb → ψ′





We can also define a corresponding transformation of first-order models: assume
that the universe of modelM for φ is a set of at most k natural numbers (each of
which is at most k− 1 and an interpretation for some xa); thenM′ is the model
with {0, 1} as its universe, where for every relation R (on tuples of naturals) of
M there is some R′, which is essentially the same relation, but on the binary
representations of the elements ofM. That is,

R′ = {(bin(a1), . . . , bin(ar)) ∈ {0, 1}
∗ | (a1, . . . , ar) ∈ R}

It is not hard to see that if M satisfies the original formula, then M′ satisfies
the new one: each xa can be interpreted as the binary representation of the
interpretation of xa inM and notice that the added equality assertions effectively
limit the y’s to range over the interpretations of the x’s, which are then exactly
the image of the elements ofM.

On the other hand, if φ′ is satisfied by a model with {0, 1} as its universe,
then φ is satisfied by the model which has the ⌈log k⌉-tuples of {0, 1} that are
the interpretations of x1, . . . ,xk as elements and as relations the restrictions of
the two-element model’s relations on these tuples. ⊓⊔

Given a first-order formula φ as above, we construct a justification formula,
φJ , in polynomial time, such that φ is satisfiable by a two-element model if and
only if φ is satisfiable by a J-model. The reader will notice several similarities
to the proof of Theorem 1.

Let
φ = ∃x1 · · · ∃xk∀y1 · · · ∀yk′ψ

be such a formula, where ψ contains no quantifiers or function symbols. Let
R1, . . . , Rm be the relation symbols appearing in ψ, a1, . . . , am their respective
arities. Then, let α = {i ∈ N | ∃r ≤ m s.t. i ≤ ar}; then, |α| = max{a1, . . . , am}.
We also define: X = {x1, . . . , xk}; Y = {y1, . . . , yk′}; Z = X ∪ Y ; ρ0 = k + k′.

For this reduction, in addition to the terms introduced in Section 3, we de-
fine the following justification terms. If we expect a term to justify a tautological
scheme of fixed length, then we can just assume the term exists and has some
constant size. Otherwise we construct the term in a way that gives it size poly-
nomial with respect to the formula it (provably) justifies. Again we need certain
terms to encode manipulations of long conjunctions (which we can see as strings)
and we start with these.

addhyp is such that ⊢ addhyp :1 (φ→ (ψ → φ));
replaceleft is such that ⊢ replaceleft :1 ((φ → φ′) → ((φ ∧ ψ) → (φ′ ∧ ψ))),

while
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replaceright is such that ⊢ replaceright :1 ((ψ → ψ′)→ ((φ∧ψ) → (φ∧ψ′)));
We define replacekl in the following way:

replacekk = replaceright,

while for l < k,

replacekl = trans · replacek−1
l · replaceleft.

Then it is not hard to see by induction on k − l that

⊢ replacekl :1 ((φl → φ′l)→ ((φ1∧· · ·∧φl∧· · ·∧φk)→ (φ1∧· · ·∧φ
′
l∧· · ·∧φk))).

We define mphypoth to be such that

⊢ mphypoth :1 ((φ→ ψ)→ ((φ→ (ψ → χ))→ (φ→ χ))).

We use justification variables var1, . . . , varar , relr for every r ∈ [m].
For 1 ≤ r ≤ m we define gatherr in the following way:

gatherr = [append · [append · · · [append · var1] · · · varar ] · relr],

For every 1 ≤ j ≤ ar + 1, let vj , v
′
j ∈ {⊤,⊥}. Then, for propositional

variables p1, . . . , par ,

ar
∧

j=1

varj :1 [pj ]
vj∧relr :1 [Rr]

var+1 ⊢ gatherr :1 ([p1]
v′1∧· · ·∧[par ]

v′ar∧[Rr ]
v′ar+1)

if and only if for every 1 ≤ j ≤ ar + 1, vj = v′j (see the proof of Lemma 3).
In fact it is not hard to see that if

ar
∧

j=1

varj :1 [pj ]
vj ∧ relr :1 [Rr]

var+1 ⊢ gatherr :1χ,

then
∧ar
j=1[pj ]

vj ∧[Rr]var+1 ⊢ χ: operator ! does not appear in gatherr, so the
right-hand side of a corresponding ∗-calculus derivation for ∗1(gatherr, χ) is
a propositional derivation of χ from [p1]

v1 , . . . , [par ]
var , [Rr]

var+1 and some
propositional tautologies.
To give some intuition, conjunction

∧ar
j=1 varj :1 [pj ]

vj ∧ relr :1 [Rr]
var+1

means that (v1, . . . , var) ∈ Rr in a corresponding first-order model.
We use justification variables valuez and match(z, pl) for all z ∈ Z, l ∈ α.

For every z ∈ X , we define Vz = valuez :1 [z]
⊤ ∨ valuez :1 [z]⊥; for every

z ∈ Y , Vz = valuez :1 [z]
⊤ ∧ valuez :1 [z]⊥.

We also define

Match =
∧

l∈α
z∈Z

△∈{⊤,⊥}

match(z, pl) :1 ([z]
△ → ([pl]

△ → okl))
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For every Rr(z) which appears in ψ and 0 ≤ b ≤ ar, we define match
Rr(z)
b

in the following way: match
Rr(z)
0 = addhyp ·gatherr and if b > 0 and zb = xl

or zb = yl−k, then match
Rr(z)
b is defined to be the term

[mphypoth ·match
Rr(z)
b−1 · [tran · [tran ·project

ρ1
l ·match(zb, b)] · replace

ar+1
b ]].

We can see by induction on b that for every 0 ≤ b ≤ ar,

Match, gatherr :1 ([p1]
v′1∧· · ·∧[par ]

v′ar∧[Rr]
var+1) ⊢

⊢ match
Rr(z1,...,zar )
b :1

(

([x1]
v1 ∧ · · · ∧ [xk]

vk ∧ [y1]
vk+1 ∧ · · · ∧ [yk′ ]

vk′+k)→

→ (ok1 ∧ · · · ∧ okb ∧ [pb+1]
v′b+1 ∧ · · · ∧ [par ]

v′ar ∧ [Rr]
var+1)

)

if and only if for every j ∈ [ar] and j
′ ∈ [k + k′], if zj = xj′ or zj = yj′−k,

then v′j = vj′ .

Match and term match
Rr(z)
b are used to confirm that given an assign-

ment v for variables x1, . . . , xk, y1, . . . , yk′ , a tuple z ∈ Zar , and a tu-
ple (v′1, . . . , v

′
ar+1

) ∈ {⊤,⊥}ar+1, that (v(z1), . . . , v(zar )) = (v′1, . . . , v
′
ar ),

since this is a crucial condition to assert that [Rr(z)]
var+1 must be true (i.e.

Rr(z) is true iff var+1
= ⊤).

T !(match
Rr(z)
b ) is defined in the following way:

T !(match
Rr(z)
0 ) = c··!addhyph·!gatherr and for b > 0 and zb = yl−k,

T !(match
Rr(z)
b ) =

c··[c··!mphypoth·T
!(match

Rr(z)
b−1 )]·![tran·[tran·projectρ1l ·match(yl, b)]·replace

ar+1
b ]

We can see by induction on b that for every 0 ≤ b ≤ ar,

Match, !gatherr :2 gatherr :1 ([p1]
v′1∧· · ·∧[par ]

v′ar ∧[Rr]
var+1) ⊢

⊢ T !(match
Rr(z)
b ) :2match

Rr(z)
b :1

(

∧

[xi]
vi ∧

∧

[yi]
vk+i →

→ (ok1 ∧ · · · ∧ okb ∧ [pb+1]
v′b+1 ∧ · · · ∧ [par ]

v′ar ∧ [Rr]
var+1)

)

if and only if

Match, gatherr :1 ([p1]
v′1 ∧ · · · ∧ [par ]

v′ar ∧ [Rr]
var+1) ⊢

⊢ match
Rr(z1,...,zar )
b :1

(

∧

[xi]
vi ∧

∧

[yi]
vk+i →

→ (ok1 ∧ · · · ∧ okb ∧ [pb+1]
v′b+1 ∧ · · · ∧ [par ]

v′ar ∧ [Rr]
var+1)

)

,

which in turn, as we have seen above, is true if and only if for every j ∈ [ar]
and j′ ∈ [k + k′], if zj = xj′ or zj = yj′−k, then v

′
j = vj′ .
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Using the terms (and formulas) we have defined above, we can construct
terms T a, where 0 < a ≤ ρ1 and eventually tφ:

Let Ψ = {ψ1, . . . , ψl} be an ordering of all subformulas of ψ and of vari-
ables x1, . . . , xk, y1, . . . , yk′ , which extends the ordering x1, . . . , xk, y1, . . . , yk′ ,
such that if a < b, then |ψa| ≤ |ψb|.8 Furthermore, ρ0 = |{a ∈ [l] | |ψa| = 0}|
(= k + k′) and ρ1 = |{a ∈ [l] | |ψa| = 1}|.

Let T 1 = valuez1 and for every 1 < a ≤ ρ0, T
a = [append · T a−1 · valueza].

It is not hard to see that for v1, . . . , vk ∈ {⊤,⊥},

valuez1 :1 [z1]
v1 , . . . , valuezk :1 [zk]

vk ⊢ T ρ0 :1 ([z1]
v1 ∧ · · · ∧ [zk]

vk). (2)

For every a ∈ [l],

if ψa = Rr(z
a
1 , . . . , z

a
ar
), then

Evala = trutha :2 ([match
ψa

ar
· T ρ0 ] :1 (ok1 ∧ · · · ∧ okar ∧ [Rr]

⊤)→ [ψa]
⊤)∧

∧trutha :2 ([match
ψa

ar
· T ρ0 ] :1 (ok1 ∧ · · · ∧ okar ∧ [Rr]

⊥)→ [ψa]
⊥);

if ψa = ¬γ, then

Evala = trutha :2 ([γ]
⊤ → [ψa]

⊥) ∧ trutha :2 ([γ]
⊥ → [ψa]

⊤);

if ψa = γ ∨ δ, then

Evala = trutha :2 ([γ]
⊤ ∧ [δ]⊤ → [ψa]

⊤) ∧ trutha :2 ([γ]
⊤ ∧ [δ]⊥ → [ψa]

⊤)

∧ trutha :2 ([γ]
⊥ ∧ [δ]⊤ → [ψa]

⊤) ∧ trutha :2 ([γ]
⊥ ∧ [δ]⊥ → [ψa]

⊥);

if ψa = γ ∧ δ, then

Evala = trutha :2 ([γ]
⊤ ∧ [δ]⊤ → [ψa]

⊤) ∧ trutha :2 ([γ]
⊤ ∧ [δ]⊥ → [ψa]

⊥)

∧ trutha :2 ([γ]
⊥ ∧ [δ]⊤ → [ψa]

⊥) ∧ trutha :2 ([γ]
⊥ ∧ [δ]⊥ → [ψa]

⊥);

if ψa = γ → δ, then

Evala = trutha :2 ([γ]
⊤ ∧ [δ]⊤ → [ψa]

⊤) ∧ trutha :2 ([γ]
⊤ ∧ [δ]⊥ → [ψa]

⊥)

∧ trutha :2 ([γ]
⊥ ∧ [δ]⊤ → [ψa]

⊤) ∧ trutha :1 ([γ]
⊥ ∧ [δ]⊥ → [ψa]

⊤).

Let Eval =
∧l
a=ρ0+1Evala.

For ρ0 < a ≤ ρ1, we define gathrela in the following way:

gathrelρ0+1 = c· · T
!(matchψa

ara
)

and for ρ0 + 1 < a ≤ ρ1,

gathrelρ0+1 = appendconc · gathrela−1 · [c· · T
!(matchψa

ara
)].

8 assume a | · |, such that |xj | = |yj | = 0, |Rj(v1, . . . , vaj
)| = 1 and if γ is a proper

subformula of δ, then |γ| < |δ|
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Then,
T ρ0+1 = replaceρ1−ρ01 · truthρ0+1 · [gathrelρ1 ·!T

ρ0 ]

and for ρ0 + 1 < a ≤ ρ1,

T a = replaceρ1−ρ0a · truthρ0+1 · T
a−1.

if ψa = ¬ψ2, then

T a = hypappend · [trans · proja−ρ0−1
j · trutha] · T

a−1 and

if ψa = ψb ◦ ψc, then

T a = hypappend · [trans · [appendconc · proja−ρ0−1
b · proja−1

c ] · trutha] · T
a−1.

We then define tφ = [right · T l].

Lemma 5. For every b ∈ [ρ1], j ∈ [arb ], let l
b = (lb1, . . . , l

b
arb

) ∈ {pj,¬pj}
arb

and vb ∈ {⊤,⊥}. Assume that for every b1, b2 ∈ [ρ1], if rb1 = rb2 and lb1 = lb2,
then it must also be the case that vb1 = vb2 . Then,9

∧

b∈[ρ1]

!gatherrb :2 gatherrb :1
(

lb ∧ [Rrb ]
b
)

∧Match∧Eval∧
∧

z∈Z

valz :1 [z]
vz ⊢ tφ :2 [φ]

⊤

if and only ifM |= φ for every modelM with universe {⊤,⊥} and interpretation
I such that

– for every z ∈ Z, vz = I(z),
– for every b ∈ [ρ1],M |= Rrb(f(l

b
1), . . . , f(l

b
arb

)) iff vb = ⊤,

where for all j ∈ α, f(pj) = ⊤ and f(¬pj) = ⊥.

Proof. The if direction is not hard to see by (induction on) the construction of
the terms T a, tφ. For the other direction, notice that a ∗-calculus derivation for

∧

b∈[ρ1]

!gatherrb :2 gatherrb :1

(

lb ∧ [Rrb ]
vb
)

,

Match, Eval,
∧

z∈Z

valz :1 [z]
vz ⊢ tφ :2 [φ]

⊤

gives on the right hand side a derivation of

∧

b∈[ρ1]

gatherrb :1

(

lb ∧ [Rrb ]
vb
)

,Match, Eval#2 ,
∧

z∈Z

valz :1 [z]
vz ⊢ [φ]⊤

Some χ = [Rr(z
a
r)]

△, where Rr(z
a
r) = ψa, a subformula of φ, can be derived

from the assumptions above only if [matchψa
ara
· T ρ0 ] :1 (ok ∧ [Rra ]

△) can be

9 For convenience and to keep the notation tidy, we identify l
b with lb1 ∧ · · · ∧ l

b
arb

and
ok with ok1 ∧ · · · ∧ okarb

.
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derived as well – notice that the assumptions cannot be inconsistent and we can
easily adjust a model that does not satisfy [matchψa

ara
· T ρ0 ] :1 (ok ∧ [Rra ]

△) so
that it does not satisfy χ either, by simply changing the truth value of χ.

The derivation of matchψa
ara

:1 (ok ∧ [Rra ]
△) is not affected by Eval#2 :

if there is a model that satisfies all assumptions except for Eval#2 and not
matchψa

ara
:1 (ok ∧ [Rra ]

△), we can assume the strong evidence property and

change the truth-values of every [ψb]
△′

to true, so the new model satisfies all the
assumptions and not [matchψa

ara
· T ρ0 ] :1 (ok ∧ [Rra ]

△).

Therefore we have a ∗-calculus derivation of [matchψa
ara
· T ρ0 ] :1 (ok ∧ [Rra ]

△)

and since gatherr only appears once in matchψa
ara

, there is some b ∈ [ρ1] such
that (see Lemma 2)

gatherrb :1

(

lb ∧ [Rrb ]
vb
)

,Match,
∧

z∈Z

valz :1 [z]
vz ⊢ [matchψa

ara
·T ρ0 ] :1 (ok∧[Rra ]

△)

Similarly, we can remove the terms from this derivation, so

lb, [Rrb ]
vb ,Match#1,

∧

z∈Z

[z]vz ⊢ ok ∧ [Rra ]
△

From which it is not hard to see that for all z ∈ Z, vb = △, so every first-
order model as described in the Lemma satisfies χ. Then it is not hard to see
by induction that all such models satisfy all [ψa]

△ derivable from these same
assumptions. ⊓⊔

Now to construct the actual formula the reduction gives. For this let ρ be a
fixed justification variable. We define the following formulas.

start = ¬[active] ∧ ρ :3



[active] ∧
∧

a∈[α]

vara :1¬pa





forwardA = ρ :4





∨

a∈[α]

vara :1¬pa ∧ [active]→ ρ :3 [active]





forwardB = ρ :4
∧

a∈[α]





∧

b∈[a−1]

varb :1 pb ∧ vara :1¬pa ∧ [active]

→ ρ :3





∧

b∈[a−1]

varb :1¬pb ∧ vara :1 pa









forwardC = ρ :4
∧

a∈[α]





∨

b∈[a−1]

varb :1¬pb ∧ vara :1¬pa ∧ [active]

→ ρ :3 vara :1¬pa)
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forwardD = ρ :4
∧

a∈[α]





∨

b∈[a−1]

varb :1¬pb ∧ vara :1 pa ∧ [active]

→ ρ :3 vara :1 pa)

end = ρ :4

(

∧

a∈α

var :1 pa ∧ [active]→ ρ :4¬[active]

)

choiceR = ρ :4
(

[active]→ relr :1 [Rr]
⊤ ∨ relr :1 [Rr]

⊥
)

choiceV = ρ :4

(

¬[active]→
∧

z∈X

(

valuez :1 [z]
⊤ ∨ valuez :1 [z]

⊥
)

∧
∧

z∈Y

(

valuez :1 [z]
⊤ ∧ valuez :1 [z]

⊥
)

)

test = ρ :4
(

¬[active]→Match ∧ Eval ∧ ¬tφ :2 [¬φ]
T
)

Then, φJFO, the formula constructed by the reduction is the conjunction of these
formulas above:

start∧forwardA∧forwardB∧forwardC∧forwardD∧end∧choiceR∧choiceV ∧test.

Theorem 3. φJFO is J-satisfiable if and only if φ is satisfiable by a two-element
first-order model.

Proof. First, assume φ is satisfiable by two-element first-order model, say M
with interpretation I, and assume that for every a ∈ [k], I(xa) is such that
M |= ∀y1, . . . , ∀yk′ψ. We construct a J-model for φJFO:

MJ = (W,R1, R2, R3, R4, E ,V), where:

– W = {σ ∈ N | σ + 2 ∈ [2α + 2]} (i.e. σ ∈ {−1, 0, 1, 2, . . .2α});
– R1 = R2 = ∅, R3 = {(σ, σ + 1) | σ < 2α} ∪ {(2α, 2α)}, and
R4 = {(σ, σ′) | σ < σ′} ∪ {(2α, 2α)};

– E is minimal such that
• E3(ρ, χ) = E4(ρ, χ) =W for any formula χ,
• E1(vara, pa) = {σ ∈ W | σ + 1 ∈ [2α] and bina(σ) = 1},
• E1(vara,¬pa) = {σ ∈W | σ + 1 ∈ [2α] and bina(σ) = 0},
• E1(relr , [Rr]⊤) = {σ ∈ W | σ + 1 ∈ [2α] and
M |= Rr(bin0(σ), . . . , binar(σ))},
• E1(relr , [Rr]⊥) = {σ ∈ W | σ + 1 ∈ [2α] and
M 6|= Rr(bin0(σ), . . . , binar(σ))},
• for every a ∈ [k], E1(valuexa

, [xa]
⊤) = {2α}, if I(xa) = ⊤ and ∅ other-

wise,
• for every a ∈ [k], E1(valuexa

, [xa]
⊥) = {2α}, if I(xa) = ⊥ and ∅ other-

wise,
• for every a ∈ [k′], E1(valueya, [ya]

⊤) = Ei(valueya, [ya]
⊥) = {2α}, and
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• MJ , 2
α |=Match,Eval;

– V([active]) = {σ ∈W | σ+1 ∈ [2α]} and for any other propositional variable
q, V (q) = ∅.

It is not hard to verify that MJ ,−1 |= φJFO, as long as we establish that
MJ , 2

α 6|= tφ :2 [¬φ]T , for which it is enough that 2α /∈ Ej(tφ, [¬φ]⊤).
The definition of E is equivalent to σ ∈ Eg(s, χ) ⇔ S ⊢∗ σ ∗g (s, χ), where

S =

{w ∗3 (ρ, F ) | w ∈W,F a formula} ∪ {w ∗4 (ρ, F ) | w ∈ W,F a formula} ∪

{w ∗1 (vara, pa) | w + 1 ∈ [2α] and bina(w) = 1} ∪

{w ∗1 (vara,¬pa) | w + 1 ∈ [2α] and bina(w) = 0} ∪

{w ∗1 (relr, [Rr]
⊤) | w + 1 ∈ [2α] andM |= Rr(bin0(w), . . . , binar(w))} ∪

{w ∗1 (relr, [Rr]
⊥) | w + 1 ∈ [2α] andM 6|= Rr(bin0(w), . . . , binar(w))} ∪

{2α ∗1 (valuexa
, [xa]

⊤) | a ∈ [k], I(xa) = ⊤} ∪

{2α ∗1 (valuexa
, [xa]

⊥) | a ∈ [k], I(xa) = ⊥} ∪

{2α ∗1 (valueya, [ya]
⊤) | a ∈ [k′]} ∪ {2α ∗1 (valueya, [ya]

⊥) | a ∈ [k′]} ∪

{2α e | e ∈ ∗Eval ∪ ∗Match}

Then, 2α ∈ E2(tφ, [¬φ]⊤) iff S ⊢∗ 2α ∗2 (tφ, [¬φ]⊤). Notice the following: since tφ

does not have ρ as a subterm, the ∗-expressions in

{w ∗3 (ρ, F ) | w ∈ W,F a formula} ∪ {w ∗4 (ρ, F ) | w ∈W,F a formula}

cannot be a part of a derivation for S ⊢∗ 2α ∗2 (tφ, [¬φ]⊤).
Since 1 ←֓ 2 ←֓ 3 and 1, 2 do not interact with any agents in any other way,

for any term s with no !, if for some a or r, vara or relr are subterms os s, if
S ⊢∗ w s :a χ, then a = 1, 0 ≤ w < 2α, and {w e ∈ S} ⊢∗ w s :1 χ. t

φ includes
exactly one !gatherrb for every b and one of valuez for every z ∈ Z. Therefore,
if S ⊢∗ 2α ∗2 (tφ, [¬φ]⊤), then there are

∧

b∈[ρ1]

!gatherrb :2 gatherrb :1Φ ∧Match ∧ Eval ∧
∧

z∈Z

valz :1 [z]
vz ⊢ tφ :2 [¬φ]

⊤

and by Lemma 5,M |= ¬φ, a contradiction.
On the other hand, let there be some M′

J where φJ is satisfied. Then, we
name −1 a state whereM′

J ,−1 |= φJ and let −1R30R31R3 · · ·R32
α. Then,

– E1(vara, pa) ⊆ {σ ∈W | σ + 1 ∈ [2α] and bina(σ) = 1},
– E1(vara,¬pa) ⊆ {σ ∈ W | σ + 1 ∈ [2α] and bina(σ) = 0},
– MJ , 2

α |=Match,Eval and for every a ∈ [k′],
MJ , 2

α |= valueya :1 [ya]
⊤, valueya :1 [ya]

⊥;
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as we can see by induction on σ - the conditions on A1(vara, pa), A1(vara,¬pa)
as imposed by forwardB , forwardC , forwardD are positive. Notice here that
if for some 0 ≤ w < 2α−1, w ∈

⋂

a∈α E1(vara, pa), then we have a contradiction:
w + 1 |= ¬[active] and if w is minimal for this to happen, then w |= [active], so
since there is some a s.t. w ∈ E1(vara,¬pa), w + 1 |= [active] (by forwardA).

Then, {w | w+1 ∈ [2α]} ⊆ E1(relr, [Rr]⊤)∪ E1(relr, [Rr]⊥) and then we can
define a first-order modelM such that:

– E1(relr, [Rr]⊤) ⊆ {σ ∈ W | σ+1 ∈ [2α] andM |= Rr(bin0(σ), . . . , binar(σ))},
– E1(relr, [Rr]⊥) ⊆ {σ ∈ W | σ+1 ∈ [2α] andM 6|= Rr(bin0(σ), . . . , binar(σ))},
– for every a ∈ [k], E1(valuexa

, [xa]
⊤) ⊆ {2α}, if I(xa) = ⊤ and ∅ otherwise,

– for every a ∈ [k], E1(valuexa
, [xa]

⊥) ⊆ {2α}, if I(xa) = ⊥ and ∅ otherwise,

Since it must be the case thatMJ , 2
α 6|= tφ :2 [¬φ], it cannot be the case that

∧

b∈[ρ1]

!gatherrb :2 gatherrb :1Φ ∧Match ∧ Eval ∧
∧

z∈Z

valz :1 [z]
vz ⊢ tφ :2 [¬φ]

⊤

and sinceM satisfies the conditions from Lemma 5,M 6|= ¬φ. ⊓⊔

Theorem 2 is then a direct consequence.

5 Final Remarks

We gave two lower bounds for the complexity of the satisfiability problem for
Justification Logic. Theorem 1 gives a general lower bound which applies to all
logics in the family, while Theorem 2 gives a lower bound for a specific logic
in the family. From a technical point of view, the reduction from a fragment of
QBF that we used for the first result is a simplification of the reduction from a
fragment of First-order Satisfiability that we used for the second result.

The merits of the general Σp
2 -hardness result is that we established an (ex-

pected) lower bound for all the logics in the family, which uses fewer assumptions
than a previous proof of the same bound (for single-agent logics) by Buss and
Kuznets in [8]. That is, we require a schematic and axiomatically appropriate
constant specification, while the proof in [8] requires that it is also schemati-
cally injective: each constant justifies at most one scheme. It is perhaps a subtle
distinction, but it means that for the first time we established this lower bound
for justification logics J, JT, JD, JD4, and LP, the versions of these single-agent
logics with the total constant specification (i.e. the one where all constants jus-
tify all axioms).10 The necessity of these properties of the constant specification
for these results and their full effects on the complexity of Justification Logic
remain to be seen, but some insightful observations were made in [8].

The NEXP-hardness result we presented in this paper makes the general
NEXP-upper bound from [4] tight, thus answering the open question from there
about whether there exists a NEXP-complete logic or the upper bound can be

10 If nothing else, this should simplify some of the notation.
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σ T ♦iψ

σ.(g, i) T ψ

where (g, i) is new;

σ F ♦iψ

σ.(g, i) F ψ

where (g, i) has already
appeared and i < 4;

σ T �iψ

σ.(g, i) T ψ

where (g, i) has already
appeared and i < 4;

σ F �iψ

σ.(g, i) F ψ

where (g, i) is new;

σ T �iψ

σ T ♦iψ

where i ∈ {3, 4};

σ T �4ψ

σ T �3ψ

σ T �iψ

σ T �j�iψ

where 0 < i < j < 4;

σ F ♦4ψ

σ.(g, 4) F ψ

σ.(g, 4)F ♦4ψ

where (g, i) has already
appeared and i ∈ {3, 4};

σ T �4ψ

σ.(g, i) T ψ

σ.(g, i) T �4ψ

where (g, i) has already
appeared and i ∈ {3, 4};

Table 3. Tableau rules for MH . To test φ for MH -satisfiability, start from a branch
which only contains (0, 0) T φ and keep expanding according to the rules above. A
branch with σ T ψ and σ F ψ is propositionally closed. A (possibly infinite) branch
which is not propositionally closed, but is closed under the rules is an accepting branch.

improved. It also makes JH the first justification logic with known complexity
having a harder satisfiability problem (assuming EXP 6= NEXP) than its corre-
sponding modal logic. In fact, as Proposition 4, if MH is the modal logic which
corresponds to JH (the modal logic with the same frame restrictions as JH), then
MH -satisfiability is in EXP: we can simulate the tableau procedure from Table
3 using an exponential time algorithm – an alternating polynomial space one
actually, where we use nondeterministic existential choices to apply the tableau
rules and universal choices to select exactly one prefix σ.(g, i) from σ to explore.
While Modal Satisfiability has been studied extensively, we are not aware of any-
one investigating specifically the complexity of MH -satisfiability, so we provide
a brief proof.

Proposition 4. Let MH be the four-modalities modal logic associated with the
class of frames (W,R1, R2, R3, R4) where R3, R4 are serial, R3 ⊆ R4, and for
(i, j) ∈ {(1, 2), (2, 3), (4, 4)}, if aRjbRic, then aRic. Then, MH-satisfiability is
in EXP.

Proof (Brief). We first prove that the tableau procedure from Table 3 is sound
and complete. From an accepting branch for φ we can construct a model for φ: let
W be the set of prefixes that have appeared in the branch; let a ∈ V(p) iff a T p
has appeared in the branch, let for i = 1, 2, 3, 4, ri = {(a, a.(g, i)) ∈ W ×W},
for i = 1, 2, Ri = ri, R3 is the transitive closure of r3, and R4 is the transitive
closure of r3 ∪ r4. It is not hard to verify that model M = (W,R1, R2, R3, R4)
satisfies all necessary conditions and thatM, (0, 0) |= φ – by inductively proving
that if a T ψ in the branch then M, a |= ψ and if a F ψ in the branch then
M, a 6|= ψ.
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On the other hand, from a model M = (W,R1, R2, R3, R4) for φ we can
make appropriate nondeterministic choices to construct an accepting branch for
φ. We map (0, 0) to a state w(0,0) such thatM, w(0,0) |= φ; then, when σ.(g, i)
appears first, it must be because of a formula of the form σ T ♦iψ (or σ F �iψ,
but it is essentially the same case). If M, wσ |= ♦iψ, then there must be some
state wσRiw, such that M |= ψ and thus we name w = wσ.(g,i). It is not hard
to see that we can make such choices when applying the rules, so that if a T ψ
in the branch thenM, wa |= ψ if a F ψ in the branch thenM, wa 6|= ψ. In fact
the rules of Table 3 preserve this condition right away; we just need to make
sure that the same thing happens with the propositional rules – for instance, rule

σ T ψ∨χ
σ T ψ | σ T χ

can make an appropriate choice depending on whetherM, wσ |= ψ

orM, wσ |= χ. Thus the constructed branch cannot be propositionally closed.
What remains is to show that this tableau procedure can be simulated by an

alternating algorithm which uses polynomial space – thus MH-satisfiability is in
APSPACE = EXP. This can be done by applying the following method: always
keep the formulas prefixed by a certain prefix σ in memory (at first σ = (0, 0)).
First apply all the tableau rules you can on the formulas prefixed by σ – possibly
use existential nondeterministic choices for this. Then, using a universal choice,
pick one of the prefixes σ′ = σ.(g, i) that were just constructed and replace the
formulas you have in memory by the ones prefixed by σ′. Repeat these steps until
we either have σ T ψ and σ F ψ in memory or we see “enough” prefixes. In this
case, “enough” would mean “more than 26|φ|”, as φ has up to |φ| subformulas, so
in a branch there can only be up to 6|φ| formulas prefixed by some fixed σ – thus
the algorithm only needs to use O(|φ|) memory and if it goes through 6|φ| + 1
prefixes, then two of these have prefixed exactly the same set of formulas. If
the algorithm accepts φ, then we can easily reconstruct an accepting branch by
just taking the union of the constructed formulas, while if there is an accepting
branch, then the algorithm can explore only parts of that branch. ⊓⊔

These results demonstrate a remarkable variability of the system. Although
many logics in the family, including the single-agent justification logics, have a
Σp

2 -complete satisfiability problem, which is lower than the complexity of satisfi-
ability for corresponding modal logics (assuming PH 6= PSPACE), there are logics
with PSPACE-complete, EXP-complete, and as we demonstrated in this paper,
NEXP-complete satisfiability problems, which in the last case is a higher com-
plexity than the one for the corresponding modal logic (assuming EXP 6= NEXP).
Still, it is important to note that even in this case the reflected fragment of the
logic remains in NP and in the absence of +, in P.
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