Skip to main content

Prediction of Clinical Information from Cardiac MRI Using Manifold Learning

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2015)

Abstract

Cardiac MR imaging contains rich information that can be used to investigate the anatomy and function of the heart. In this paper, we demonstrate that it is possible to learn anatomical and functional information from cardiac MR imaging without explicit segmentation in order to predict clinical variables such as blood pressure with high accuracy. To learn the anatomical variations, we build manifolds of different time points across different subjects. In addition, we investigate two different approaches to incorporate motion information into a manifold, and compare these manifolds to a manifold learned from a single time point. Combining both inter- and intra-subject variation, we are able to construct accurate and reliable classifiers to predict clinical variables. Our proposed method does not require any explicit image segmentation and motion estimation and is able to predict clinical variables with good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aljabar, P., Wolz, R., Rueckert, D.: Manifold learning for medical image registration, segmentation, and classification. In: Machine Learning in Computer-aided Diagnosis: Medical Imaging Intelligence and Analysis. IGI Global (2012)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  3. Bhatia, K., Rao, A., Price, A., Wolz, R., Hajnal, J., Rueckert, D.: Hierarchical manifold learning for regional image analysis. IEEE Trans. Med. Imaging 33(2), 444–461 (2014)

    Article  Google Scholar 

  4. Chang, W.-Y., Chen, C.-S., Hung, Y.-P.: Analyzing facial expression by fusing manifolds. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 621–630. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Duchateau, N., Craene, M.D., Piella, G., Frangi, A.F.: Constrained manifold learning for the characterization of pathological deviations from normality. Med. Image Anal. 16(8), 1532–1549 (2012)

    Article  Google Scholar 

  6. Duchateau, N., De Craene, M., Piella, G., Silva, E., Doltra, A., Sitges, M., Bijnens, B.H., Frangi, A.F.: A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities. Med. Image Anal. 15(3), 316–328 (2011)

    Article  Google Scholar 

  7. Fonseca, C.G., Backhaus, M., Bluemke, D.A., Britten, R.D., Do Chung, J., Cowan, B.R., Dinov, I.D., Finn, J.P., Hunter, P.J., Kadish, A.H.: The cardiac atlas projectan imaging database for computational modeling and statistical atlases of the heart. Bioinf. 27(16), 2288–2295 (2011)

    Article  Google Scholar 

  8. Hoogendoorn, C.: A Statistical Dynamic Cardiac Atlas for the Virtual Physiological Human: Construction and Application. Universitat Pompeu Fabra, Barcelona (2014)

    Google Scholar 

  9. Lombaert, H., Peyrat, J., Croisille, P., Rapacchi, S., Fanton, L., Cheriet, F., Clarysse, P., Magnin, I., Delingette, H., Ayache, N.: Human atlas of the cardiac fiber architecture: study on a healthy population. IEEE Trans. Med. Imaging 31(7), 1436–1447 (2012)

    Article  Google Scholar 

  10. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  11. Vapnik, V.: Statistical Learning Theory, 1st edn. Wiley, New York (1998)

    MATH  Google Scholar 

  12. Wachinger, C., Yigitsoy, M., Navab, N.: Manifold learning for image-based breathing gating with application to 4D ultrasound. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 26–33. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Wang, C., Mahadevan, S.: Manifold alignment using procrustes analysis. In: Proceedings of the 25th international conference on Machine learning, pp. 1120–1127. ACM (2008)

    Google Scholar 

  14. Wang, Z., Ben Salah, M., Gu, B., Islam, A., Goela, A., Li, S.: Direct estimation of cardiac biventricular volumes with an adapted bayesian formulation. IEEE Trans. Biomed. Eng. 61(4), 1251–1260 (2014)

    Article  Google Scholar 

  15. Wolz, R., Aljabar, P., Hajnal, J., Hammers, A., Rueckert, D., Initi, A.D.N.: Leap: learning embeddings for atlas propagation. Neuroimage 49(2), 1316–1325 (2010)

    Article  Google Scholar 

  16. Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S.: Direct estimation of cardiac bi-ventricular volumes with regression forests. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 586–593. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Rueckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, H. et al. (2015). Prediction of Clinical Information from Cardiac MRI Using Manifold Learning. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics