Skip to main content

A Comprehensive Framework for the Characterization of the Complete Mitral Valve Geometry for the Development of a Population-Averaged Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9126))

Abstract

Simulations of the biomechanical behavior of the Mitral Valve (MV) based on simplified geometric models are difficult to interpret due to significant intra-patient variations and pathologies in the MV geometry. Thus, it is critical to use a systematic approach to characterization and population-averaging of the patient-specific models. We introduce a multi-scale modeling framework for characterizing the entire MV apparatus geometry via a relatively small set of parameters. The leaflets and annulus are analyzed using a superquadric surface model superimposed with fine-scale filtered level-set field. Filtering of fine-scale features is performed in a spectral space to allow control of resolution, resampling and robust averaging. Chordae tendineae structure is modeled using a medial axis representation with superimposed filtered pointwise cross-sectional area field. The chordae topology is characterized using orientation and spatial distribution functions. The methodology is illustrated with the analysis of an ovine MV microtomography imaging data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guy, T.S., Hill, A.C.: Mitral valve prolapse. Annu. Rev. Med. 63, 277–292 (2012)

    Article  Google Scholar 

  2. Enriquez-Sarano, M., Akins, C.W., Vahanian, A.: Mitral regurgitation. The Lancet. 373(9672), 1382–1394 (2009)

    Article  Google Scholar 

  3. Kheradvar, A., Groves, E.M., Dasi, L.P., Alavi, S.H., Tranquillo, R., Grande-Allen, K.J., Simmons, C.A., et al.: Emerging trends in Heart valve engineering: part I solutions for future. Ann. Biomed. Eng. 43(4), 1–11 (2014)

    Google Scholar 

  4. Wang, Q., Sun, W.: Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41(1), 142–153 (2013)

    Article  Google Scholar 

  5. Votta, E., Caiani, E., Veronesi, F., Soncini, M., Montevecchi, F.M., Redaelli, A.: Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos. Trans. R. Soc. Lond., A: Math. Phys. Eng. Sci. 3669(1879), 3411–3434 (2008)

    Article  Google Scholar 

  6. Mansi, T., Voigt, I., Georgescu, B., Zheng, X., Mengue, E.A., Hackl, M., Ionasec, R.I., Noack, T., Seeburger, J., Comaniciu, D.: An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 16(7), 1330–1346 (2012)

    Article  Google Scholar 

  7. Choi, A., Rim, Y., Mun, J.S., Kim, H.: A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. Bio-Med. Mater. Eng. 24(1), 341–347 (2012)

    Google Scholar 

  8. Kunzelman, K.S., Cochran, R.P., Chuong, C., Ring, W.S., Verrier, E.D., Eberhart, R.D.: Finite element analysis of the mitral valve. J. Heart Valve Dis. 2(3), 326–340 (1993)

    Google Scholar 

  9. Votta, E., Le, T.B., Stevanella, M., Fusini, L., Caiani, E.G., Redaelli, A., Sotiropoulos, F.: Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J. Biomech. 46(2), 217–228 (2013)

    Article  Google Scholar 

  10. Lee, C.-H., Oomen, P.J., Rabbah, J.P., Yoganathan, A., Gorman, R.C., Gorman III, J.H., Amini, R., Sacks, M.S.: A high-fidelity and micro-anatomically accurate 3D finite element model for simulations of functional mitral valve. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 416–424. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Swanson, W.M., Clark, R.E.: Dimensions and geometric relationships of the human aortic value as a function of pressure. Circ. Res. 35(6), 871–882 (1974)

    Article  Google Scholar 

  12. Haj-Ali, R., Marom, G., Zekry, S.B., Rosenfeld, M., Raanani, E.: A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J. Biomech. 45(14), 2392–2397 (2012)

    Article  Google Scholar 

  13. Ryan, L.P., Jackson, B.M., Eperjesi, T.J., Plappert, T.J., St John-Sutton, M., Gorman, R.C., Gorman, J.H.: A methodology for assessing human mitral leaflet curvature using real-time 3-dimensional echocardiography. J. Thorac. Cardiovasc. Surg. 136(3), 726–734 (2008)

    Article  Google Scholar 

  14. Pouch, A.M., Vergnat, M., McGarvey, J.R., Ferrari, G., Jackson, B.M., Sehgal, C.M., Yushkevich, P.A., Gorman, R.C., Gorman, J.H.: Statistical assessment of normal mitral annular geometry using automated three-dimensional echocardiographic analysis. Ann. Thorac. Surg. 97(1), 71–77 (2014)

    Article  Google Scholar 

  15. Yeong, M., Silbery, M., Finucane, K., Wilson, N.J., Gentles, J.L.: Mitral valve geometry in paediatric rheumatic mitral regurgitation. Pediatr. Cardiol. 36(4), 1–8 (2015)

    Article  Google Scholar 

  16. Rabbah, J.-P., Saikrishnan, N., Yoganathan, A.P.: A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann. Biomed. Eng. 41(2), 305–315 (2013)

    Article  Google Scholar 

  17. Siefert, A.W., Rabbah, J.P.M., Koomalsingh, K.J., Touchton, S.A., Saikrishnan, N., McGarvey, J.R., Gorman, R.C., Gorman, J.H., Yoganathan, A.P.: In vitro mitral valve simulator mimics systolic valvular function of chronic ischemic mitral regurgitation ovine model. Ann. Thorac. Surg. 95(3), 825–830 (2013)

    Article  Google Scholar 

  18. Lee, T.-C., Kashyap, R.L., Chong-Nam, C.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graph. Models Image Process. 56(6), 462–478 (1994)

    Google Scholar 

  19. Jaklic, A., Leonardis, A., Solina, F.: Segmentation and Recovery of Superquadrics. Springer, The Netherlands (2000)

    Book  MATH  Google Scholar 

  20. Moré, J.J.: The Levenberg-Marquardt algorithm: implementation and theory. In: Watson, G.A. (ed.) Numerical Analysis. LNCS, vol. 630, pp. 105–116. Springer, Heidelberg (1978)

    Chapter  Google Scholar 

  21. Zhu, C.-H., Liu, Q.H., Shen, Y., Liu, L.: A high accuracy conformal method for evaluating the discontinuous Fourier transform. Prog. Electromagnet. Res. 109, 425–440 (2013)

    Article  Google Scholar 

  22. Greengard, L., June-Yub, L.: Accelerating the nonuniform fast Fourier transform. SIAM Rev. 46(3), 443–454 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gröchenig, K.: Reconstruction algorithms in irregular sampling. Math. Comput. 59(199), 181–194 (1992)

    Article  MATH  Google Scholar 

  24. Alhashim, I., Li, H., Xu, K., Cao, J., Ma, R., Zhang, H.: Topology-varying 3D shape creation via structural blending. ACM Trans. Graph. 33(4), 158 (2014)

    Article  Google Scholar 

  25. Berdajs, D., Lajos, P., Turina, M.I.: A new classification of the mitral papillary muscle. Med. Sci. Rev. 11(1), 18–21 (2005)

    Google Scholar 

  26. Sun, W., Martin, C., Pham, T.: Computational modeling of cardiac valve function and intervention. Ann. Rev. Biomed. Eng. 16, 53–76 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by National Heart, Lung, and Blood Institute of the National Institutes of Health under award number R01HL119297. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Khalighi, A.H. et al. (2015). A Comprehensive Framework for the Characterization of the Complete Mitral Valve Geometry for the Development of a Population-Averaged Model. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics