Skip to main content

Cardiac Motion Estimation Using Ultrafast Ultrasound Imaging Tested in a Finite Element Model of Cardiac Mechanics

  • Conference paper
  • First Online:
Book cover Functional Imaging and Modeling of the Heart (FIMH 2015)

Abstract

Recent developments in ultrafast ultrasound imaging allow accurate assessment of 3D cardiac deformation in cardiac phases with high deformation rates. This paper investigates the performance of a multiple spherical wave (SW) ultrasound transmission scheme in combination with a motion estimation algorithm for cardiac deformation assessment at high frame rates. Ultrasound element data of a realistically deforming 3D cardiac finite element model were simulated for a phased array transducer, transmitting five SWs (PRF 2500 Hz). After delay-and-sum beamforming, coherent compounding of multiple SW transmissions was performed to generate radiofrequency data (frame rate 500 Hz). Axial and lateral displacements were determined using a normalized cross-correlation-based technique. Good agreement was obtained between estimated and ground truth displacements derived from the model over the cardiac cycle. This study indicates that high frame rate displacement estimation using multiple SWs is feasible and serves as an important step towards high frame rate 3D cardiac deformation imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konofagou, E.E., D’hooge, J., Ophir, J.: Myocardial elastography-a feasibility study in vivo. Ultrasound Med. Biol. 28, 475–482 (2002)

    Article  Google Scholar 

  2. Leitman, M., Lysyansky, P., Sidenko, S., Shir, V., Peleg, E., Binenbaum, M., Kaluski, E., Krakover, R., Vered, Z.: Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J. Am. Soc. Echocardiogr. 17, 1021–1029 (2004)

    Article  Google Scholar 

  3. Lopata, R.G., Nillesen, M.M., Thijssen, J.M., Kapusta, L., de Korte, C.L.: Three-dimensional cardiac strain imaging in healthy children using RF-data. Ultrasound Med. Biol. 37(9), 1399–1408 (2011)

    Article  Google Scholar 

  4. Bohs, L.N., Trahey, G.E.: A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Trans. Biomed. Eng. 38(3), 280–286 (1991)

    Article  Google Scholar 

  5. Céspedes, E.I., de Korte, C.L., van der Steen, A.W.: Echo decorrelation from displacement gradients in elasticity and velocity estimation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 791–801 (1999)

    Article  Google Scholar 

  6. Montaldo, G., Tanter, M., Bercoff, J., Benech, N., Fink, M.: Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(3), 489–506 (2009)

    Article  Google Scholar 

  7. Hasegawa, H., Kanai, H.: High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming. J. Med. Ultrasound 38(33), 129–140 (2011)

    Article  Google Scholar 

  8. Tong, L., Gao, H., Choi, H.F., D’hooge, J.: Comparison of conventional parallel beamforming with plane wave and diverging wave imaging for cardiac applications: a simulation study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(8), 1654–1663 (2012)

    Article  Google Scholar 

  9. Kerckhofs, R.C.P., Bovendeerd, P.H.M., Kotte, J.C.S., Prinzen, F.W., Smits, K., Arts, T.: Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study. Ann. Biomed. Eng. 31, 536–547 (2003)

    Article  Google Scholar 

  10. Bovendeerd, P.H.M., Kroon, W., Delhaas, T.: Determinants of left ventricular shear strain. Am. J. Physiol. Heart Circ. Physiol. 297, 1058–1068 (2009)

    Article  Google Scholar 

  11. Jensen, J.A., Svendsen, N.B.: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 262–267 (1992)

    Article  Google Scholar 

  12. Jensen, J.A.: FIELD: a program for simulating ultrasound systems. Med. Biol. Eng. Comput. 34(1), 351–353 (1996)

    Google Scholar 

  13. Lockwood, G.R., Talman, J.R., Brunke, S.S.: Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(4), 980–988 (1998)

    Article  Google Scholar 

  14. Papadacci, C., Pernot, M., Couade, M., Fink, M., Tanter, M.: High-contrast ultrasound imaging of the heart. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(2), 288–301 (2014)

    Article  Google Scholar 

  15. Lopata, R.G.P., Nillesen, M.M., Hansen, H.H.G., Gerrits, I.H., Thijssen, J.M., de Korte, C.L.: Performance of two dimensional displacement and strain estimation techniques using a phased array transducer. Ultrasound Med. Biol. 35(12), 2031–2041 (2009)

    Article  Google Scholar 

  16. De Craene, M., Alessandrini, M., Allain, P., Marchesseau, S., Waechter-Stehle, I., Weese, J., Saloux, E., Morales, H.G., Cuingnet, R., Delingette, H., Sermesant, M., Bernard, O., D’hooge, J.: Generation of ultra-realistic synthetic echocardiographic sequences. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 73–76 (2014)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Dutch Technology Foundation STW (NKG 12122), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maartje M. Nillesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nillesen, M.M. et al. (2015). Cardiac Motion Estimation Using Ultrafast Ultrasound Imaging Tested in a Finite Element Model of Cardiac Mechanics. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics