
Context-awareness in Task Automation Services
by Distributed Event Processing

Miguel Coronado , Ralf Bruns , Jiirgen Dunkel , and Sebastian Stipkovic

Abstract. Everybody has to coordinate several tasks everyday, usually
in a manual manner. Recently, the concept of Task Automation Services
has been introduced to automate and personalize the task coordination
problem. Several user centered platforms and applications have arisen in
the last years, that let their users configure their very own automations
based on third party services. In this paper, we propose a new system
architecture for Task Automation Services in a heterogeneous mobile,
smart devices, and cloud services environment. Our architecture is based
on the novel idea to employ distributed Complex Event Processing to
implement innovative mixed execution profiles. The major advantage of
the approach is its ability to incorporate context-awareness and real-time
coordination in Task Automation Services.

Keywords : Distributed Task Automation Services, Complex Event Pro­
cessing, Personalized Services, Context-Awareness, Mobile Services

1 Introduction

Nowadays, most users of smartphones, smart devices, social platforms, and cloud
services use these emerging technologies to coordinate their private and business
tasks (and, of course, for other purposes). However, the numerous coordination
tasks are still performed manually to provide different technical platforms and
human participants with new information or to trigger appropriate actions. To
overcome with this cumbersome and time-consuming procedure, Task Automa­
tion Services (TAS) platforms have been introduced recently.

Task Automation Services allow the users to automate their tasks by defining
simple rules instead of performing manually all the required steps of a task. If
these automation rules are matched by events tha t are emitted by smartphones
or by services (such as Twitter or Dropbox), they trigger a desired reaction.
For instance, some users may want to "post in Twitter their Facebook status as

soon as they publish it". Others may also need to "update their Twitter profile
picture any time they change their Facebook's".

Currently, several TAS platforms are available to provide this type of func­
tionalities. We can distinguish two types of TAS's depending on the platform
they are running on:

— Web-based TAS's such as Ifttt3, Zapier4 and Elastic.io5 are deployed as cloud
services. They collect personal events by accessing appropriate web services
on behalf of the user and provide a simple rule editor.

— Smartphone-based TAS's such as Automatelt6 and Tasker7 run on a smart-
device and have access not only to data via web services, but also to the
local resources of the device, e.g. the embedded smartphone sensors.

Task Automation Services rules may be executed according to different ex­
ecution profiles that define where rule execution takes place. According to the
above mentioned TAS types, we may distinguish:

1. A web-driven execution profile centralizes the rule execution on a server,
allowing lightweight clients at the cost of requiring Internet connection.
Typically, clients setup and manage the rules by a web page. Alternatively,
smartphone apps could provide the same functionality. Web-driven execu­
tion profiles may have to cope with a huge amount of incoming events; they
may have access to a large set of channels and may coordinate events from
different users.

2. A device-driven execution profile executes all rules on the device itself, allow­
ing offline rule execution (when only local resources are involved). Usually,
when we talk about device-driven TAS, we refer to smartphone apps, al­
though the definition is not restricted to smartphone devices. Rules in a
device-driven execution profile can exploit the device-specific data, e.g. pro­
vided by the smartphone sensors. Therefore, some rules could derive the
users' local context or current situation.

3. A mixed execution profile benefits from the advantages of both previous pro­
files. It distributes the execution of automation rules between clients (smart
devices) and servers. However, mixed execution profiles require a distributed
and, therefore, more complex system architecture and more complex rules.

Note that current TAS systems are still rather restricted: they allow only the
definition of very simple rules. Furthermore, they cannot combine web-driven
and device-driven execution profiles, i.e. mixed execution profiles are yet not
available.

In the following, we will present an innovative architecture for Distributed
Task Automation Services supporting mixed execution profiles. Our approach

3 http://ifttt.com
4 http://zapier.com
5 http://www.elastic.io/
6 http://automateitapp.com/
7 http://tasker.dinglisch.net

http://ifttt.com
http://zapier.com
http://www.elastic.io/
http://automateitapp.com/
http://tasker.dinglisch.net

is based on the employment of Complex Event Processing (CEP). CEP is a
novel software technology for processing continuous streams of data in near real­
time [9]. The basic concept of CEP is in-memory pattern matching, which means
to identify in data streams those patterns of data that represent a meaning-full
situation in the application domain.

In our approach, we use CEP to build a Distributed TAS system that is
capable of coordinating peoples' tasks in real-time. The approach provides the
following features:

— Context-awareness: The current activities, contexts and situations of the par­
ticipating users can be concluded by correlating sensor data of their smart-
phones (e.g. accelerometer, GPS) and further domain-specific context infor­
mation. The corresponding rules are realized in a device-driven execution
profile.

— Coordination: Appropriate TAS rules coordinate various participants by tak­
ing into account their current context and situation information. They are
realized according to a web-driven execution profile, which is implemented
on a central server.

The paper is structured as follows. In the following section, we present a
TAS coordination scenario that motivates our approach, and which is used to
explain our approach in the subsequent sections. Then in Section 3, we present
the basic concepts of Complex Event Processing. In Section 4, we describe our
general architecture of a Distributed TAS system. In the subsequent sections, we
evaluate our approach and present some implementation issues. The related work
is discussed in Section 7. Finally, we summarize the most significant features of
our approach and give a brief outlook on future lines of research.

2 TAS Coordination Scenario

Task Automation Service's (TAS's) are highly flexible platforms that users can
use to orchestrate task automation addressing many different situations. The
scenario we describe in this section presents a complex use case, where various
smart devices determine the current situations of their owners, which are then
broadcasted to a central Task Automation Service that performs appropriate
coordination tasks. Note that each smart device is capable to orchestrate sim­
ple automations on their own, but that a centralized TAS platform is used for
coordination purposes.

Consider the following use case: Patricia and Thomas live together. They
share the housework, which also includes outside tasks such as shopping, sharing
the car, or picking up their children from the kindergarten. Since they work in
different parts of the city, they cannot devise a fixed schedule beforehand. In
the past, it required a high coordination effort for them to organize these things
manually by phone calls or text messages. Sometimes it happened that they
didn't notify each other, causing that both of them went shopping at the same

time (buying the needed groceries twice) or forgetting to tell that they have
already picked up the kids.

Because they both use TAS for their personal automations, they decided to
share several rules that help them in coordinating these tasks. They set up rules
to automatically inform each other, when they are in a certain situation or doing
a certain activity. Using the GPS sensors of Patricia and Thomas' smartphones,
the TAS can deduce the concrete situation, in which the two of them are, causing
an appropriate action. In the usual TAS terminology, one rule could be read as
"When I am at the supermarket, then text my mate that I'm shopping". Then,
if Thomas goes to the supermarket after work, Patricia will know he is doing
the shopping, so she does not need to go there.

The task "picking up the children" requires that one of them is at the kinder­
garten shortly before the children are dismissed. Therefore, it requires the TAS
to coordinate ahead, taking journey times from their current position to the
kindergarten into account. The task could be expressed as "Everyday, either
Patricia or Thomas must be at the kindergarten at 17 o'clock. Usual rules for
coordinating this task could be "When I'm at home and my mate is still at
work, remind me I should pick up the children" and "If my mate was at the
kindergarten, inform me that I don't have to pick up the children".

In particular, automatic task coordination avoids manually triggered notifica­
tions, which are error-prone and awkward. Furthermore, corresponding messages
can take the current situation of the recipient into account, i.e. they are only
delivered, when the recipient is in a ready-to-receive mood.

3 Complex Event Processing

Complex Event Processing is an innovative software technology for processing
continuous streams of events in near real-time [9], [10]. Everything that happens
inside or outside of a system is considered as an event. CEP analyses streams of
incoming events to detect the presence of event patterns.

An event pattern is a particular sequence of events with a special meaning
for the application domain. A pattern match signifies a meaningful situation or
state of the environment and causes either the generation of a new complex event
or triggers a domain-specific action. Complex events correlate between simple
events and provide the real power of CEP.

Event stream processing systems manage the most recent set of events in-
memory and employ sliding windows and temporal operators to specify temporal
relations between the events in the stream. The core concept of CEP is a declara­
tive event processing language (EPL) to express event processing rules. An event
processing rule contains two parts: a condition part describing the requirements
for firing the rule and an action part that is performed if the condition matches.
The condition is defined by an event pattern using several operators and further
constraints [3].

In the following, we use a simplified pseudo language for expressing event
processing rules, which is easier to understand than an EPL of a productive
CEP system. This pseudo language supports the following operators:

Operators
AND, OR Boolean operator for events or constraints.

NOT Negation of a constraint.
-> Sequence of events.

Timer Timer (time) defines a time to wait.
Timer.at(daytime) is a specific (optionally periodic) point of time,

.within defines a time window in which the event has to occur.

An event processing engine analyses the stream of incoming events and ex­
ecutes the matching rules. Event processing rules transform low level simple
events into more complex events in order to gain insight into the current state
of the environment.

Luckham introduced the concept of event processing agents (EPA) [10]. An
EPA is an individual CEP component with its own rule engine and rule base.
Several EPAs can be connected to an event processing network (EPN) that
constitutes a software architecture for event processing. Event processing agents
communicate with each other by exchanging events.

4 Architecture

In this section, we present an architecture for Distributed TAS supporting mixed
execution profiles. In particular, our architecture exploits the sensor data of the
smart devices for achieving situation awareness.

4.1 Architecture overview

An overview of the overall system architecture is given in Fig. 1. The distributed
architecture shows the different TAS rule engines according to the mixed execu­
tion profile definition.We can distinguish the following components:

Smart devices: The system consists of numerous smart devices, which have the
following responsibilities in the system. First, they collect all events emitted
by its sensors and other local resources (the so-called content providers). The
streams of events are processed on each smart device by its own CEP rule
engine, which contains appropriate rules for providing semantic inference. In
particular, the CEP rules filter, process and enhance the observed data events
to produce richer situation events that reflect the current users' context. All
the situation events are sent to the server to allow cross-user coordination.
Furthermore, smart devices can perform conventional task automation rules.
These rules can react on responses of the coordination server, or they are
either server-independent and can be processed locally.

Rules I inference I

Fig. 1. Architecture overview of a distributed TAS system with coordination.

Coordination Server: The central Coordination Server is deployed to the cloud
and responsible for coordinating the smart devices and their users. For this
purpose, it also has its own C E P engine with appropriate coordination rules
tha t manage the smart devices taking the users' current context into account.
Furthermore, the server provides support for conventional task automation
rules, tha t orchestrate automations between web channels.8

Channels: Additionally, both the smart devices as well as the coordination
server have access to web services (the so-called channels), using specific
connectors.9 These web services can provide the system with more necessary
context information, e.g. weather or traffic data .

In our architecture we distinguish C E P rules from Task Automation rules:
Because C E P rules allow temporal reasoning, all rules tha t involve movement,
or GPS positioning will be defined as C E P rules. Note tha t C E P rules provide
some form of semantic inference: they shift simple events (e.g. sensor events)
to complex events (e.g. situation events) tha t assign the occurred events a new
non-obvious and semantically richer meaning.

8 This is the case for rules like "Whenever I receive an email with attachment save
that attachment on my Dropbox", those are out of the scope of our scenario, but
they are still supported by our system.

9 In most cases, they are implemented by API connectors (because most third party
web service developers offer it); however, webhooks or pub-sub are even more con­
venient approaches to work with events on the cloud.

4.2 C E P for T A S

In this section, we will explain in some more detail, how Complex Event Pro­
cessing (CEP) in our TAS architecture works (see Fig. 1). In our approach, C E P
is based on a multi-staged Event Processing Network (EPN) in order to logically
structure and modularize the event processing rules.

To make the explanation of our approach concrete, we will use our applica­
tion scenario presented in section 2. The following Fig. 2 shows a set-up with
two different smartphones1 0 and the central Coordination Server. The Event
Processing Network contains various Event Processing Agents (EPAs) tha t are
distributed on the different devices.

Smartphone

sensor
events

Cleaning/
Filtering
Agent

rules

position
events

Behavior
Agent

behavior
events

staying

Situation
Agent

rules

A

sensor
events

Cleaning/
Filtering
Agent

position
events

Behavior
Agent

behavior
events

staying
driving

Situation
Agent

Smartphone

action i
event I L

embedded CEP on smart devices serverside CEP

Fig. 2. Event Processing Network for distributed TAS

The EPN defines the archetypal processing stages and the related EPAs,
which are common to most TAS systems. However, the particular event process­
ing rules must be adapted to a specific application scenario. In the following we
describe the responsibilities of each EPA.

C l e a n i n g / F i l t e r i n g A g e n t

The Cleaning/Filtering Agent is deployed to the smartphones and collects all
sensor events, such as the GPS events. Sensor da ta is often inconsistent or has
redundant information, because sensors are noisy and have a fixed sampling rate.
Therefore, in a first step, all technical sensor events have to be pre-processed to
overcome inconsistencies or to filter out irrelevant events.
10 Other types of smart devices like smart home devices are possible, which would have

their own domain-specific EPN.

For instance, GPS sensor da ta is generated with a fixed sampling rate. Thus,
many subsequent GPS events are logically identical. But the TAS system is
only interested in situation changes, and not in the repetition of events carrying
similar measured values. Therefore, the Filtering Agent filters out those GPS
events tha t are related to the same geographical position. The following event
processing rule has the task to find out, if the phone has been moved to a new
position.

r u l e : "new phone/user p o s i t i o n "
CONDITION GPS-Event AS g l ->

GPS-Event AS g2
AND (G e o . i s D i f f e r e n t (g l , g 2))

ACTION new P o s i t i o n E v e n t (g 2 . x , g 2 . y)

The rule "new phone/user position" expresses a temporal sequence of GPS
events (by the following operator "->") and assigns the alias names g l and g2 to
them. The newer event g2 represent the current position of the user and is only
relevant if the GPS position has significantly changed, which is checked by the
service Geo. i s D i f f e r e n t (. . .) . In the action part of the rule, a new Position
event with the information of the current position is triggered.

Behav ior A g e n t

The incoming Position events are correlated with further sensor events (e.g.,
Acceleration sensor events) to determine the particular behavior of the user.
New (more complex) Motion events are created tha t characterize the current
behavior of the smartphone user. Here we consider the different types of motion
such as "walking", "driving", "staying". The following rule derives tha t the user
is staying for a longer t ime a certain position.

r u l e : "staying"
CONDITION Pos i t ionEvent AS pos ->

NOT (P o s i t i o n E v e n t) . w i t h i n (5 min)
ACTION new StayingEvent(pos)

The above rule assumes tha t the user is staying at a certain position, if a
Position event is not followed by a new Position event within a time interval
of 5 minutes. The operator .w i th in defines a time window, in which a certain
event has to occur.

The next rule derives a corresponding Driving event. The average velocity
of a moving user can be calculated by aggregating all Position events within
the last five minutes and determining the average of the measured speed values.
The speed is determined by a method ge tSpeed(. .) tha t is provided by the
GPS sensors. If the speed is faster than 15 km/h , it is concluded tha t the user
is driving.

rule: "driving"

CONDITION PositionEvent.avg(getSpeed())

.within:batch(5 min)

AS avgVe loc i ty
AND avgVe loc i ty > 15 km/h

ACTION new Driv ingEvent (avgVeloc i ty)

In summary, the Behavior Agent processes a correlation step to synthesize
Motion events. All Motion events are subsequently propagated to the Situation
Agent.

Si tuat ion A g e n t

In the next processing stage, the Situation Agent is determining the current sit­
uation of the smartphone user. The situations of interest depend on the concrete
use case scenario. For instance, in our example scenario 'picking up the children
from kindergarten' , we want to know, where each family member is and if the
children have already been picked up.

The incoming Location and Motion events are carrying only GPS coordinates
that have no specific meaning in the TAS domain, and are not sufficient for
further processing. Therefore, the GPS da ta should be transformed to domain
locations. A first enrichment step relates GPS coordinates to a real address,
which can be done by a reverse geocoding API, e.g. provided by GoogleMaps.
Then the address can be mapped to a relevant location of the user, such as
"kindergarten", "home" or "work". An example gives the following simple rule
that derives a "working" situation:

r u l e : "In Working s i t u a t i o n "
CONDITION (StayingEvent AS s t a y

-> NOT Pos i t ionEvent)
AND L o c a t i o n F i n d e r . g e t L o c a t i o n (s t a y . p o s i t i o n) == "work"

ACTION new WorkingEvent(user)

If the system has created a Staying event, which is not followed by a new
Position event (i.e. no significant movement has occurred afterwards), then the
GPS position is checked in a utility class L o c a t i o n F i n d e r . g e t L o c a t i o n (. .) .
If the positions corresponds to the users' workplace, a new Working event will
be created.

All Situation events are sent to the TAS server in order to allow task coor­
dination based on the current situations of the users.1 1 Therefore, the Working
event will carry information for identifying the smartphone user.

11 Detected situations can also generate Action events which are sent to an app on the
smartphone in order to trigger an appropriate app action.

C o o r d i n a t i o n A g e n t

The Coordination Agent is deployed to a central cloud server and responsible
for coordination tasks. All smart devices send their Situation events to the Co­
ordination Agent tha t coordinates common tasks and conflicts centrally. In the
kindergarten example, the following simplified rule could determine tha t the
person, which is not working, has to pick up the children.

r u l e : " p i c k i n g up c h i l d r e n "
CONDITION

(Work ingEvent (u l) -> NOT S i t u a t i o n E v e n t (u l)) AND
(HomeEvent(u2) -> NOT S i t u a t i o n E v e n t (u 2))
-> T i m e r . a t (1 7 o ' c l o c k)

ACTION new P ickUpChi ld renEven t (u2)

The rule matches, if for user u l a Working event and for user u2 a Home event
has occurred. To make sure tha t their situations haven't changed, no subsequent
Situation events may have occurred. Furthermore, the current t ime must be 17
o'clock. If all this holds, then a PickUpChildrenEvent is created for the user
u2, who is already at home. Additionally, the SituationAgent triggers an Action
event, which prompts or signals the user u2 to pick up the children from the
kindergarten.

Note tha t this a simplified example. For a realistic coordination mechanism
more sophisticated rules are necessary.

4 .3 T A S Event M o d e l

The event model of our TAS application is depicted in Fig. 3 showing the different
types of events tha t are used by the event processing rules presented above. Note
that the grey boxes represent the generic event types common to most classes of
TAS coordinating systems. The various subtypes are more specific, here to our
use case described in section 2.

Coordination
Event

K
/ [GgShgrjpjna I

I PickUpKidH

Fig. 3 . Event model

The TAS system makes use of the following types of events:

— Sensor events are explicit events that are emitted by explicit event sources,
here the sensors of the mobile devices. In particular, we can distinguish
GPS events, Acceleration events and Position events, which are filtered GPS
events.

— Motion events describe the current motion of a user and are produced by
CEP rules that correlate various Sensor events. In our example, we distin­
guish Driving, Walking and Staying events.

— Situation events describe the current situation of a user, which is application
specific (in our case we consider Working, Home and Kindergarten events).

— Coordination events are a result of a coordination rule that correlates various
Situation events from different users/devices. Coordination events are sent
back to the related mobile devices. They inform the user about task they
are obliged to.

5 Evaluation

The presented architecture distributes TAS coordination on different compo­
nents: the smartphones provide local situation-awareness for each user. The cen­
tral web server is aware of the global situation and is responsible for coordinating
the tasks of all participating users. Our architecture offers the following advan­
tages:

— Reduced network traffic: Sensor data is processed directly on the mobile
device and not send to the central server. Because the sensors of potentially
many users may produce a high volumes of data, the overall network traffic
is reduced significantly.

— Exploiting local processing power: Processing data on the smart devices also
exploits the processing power of mobile devices, which nowadays is reason­
able. The central coordination server doesn't have to track each movement
of each device.

— Privacy: All participants get only the information that is relevant and nec­
essary for them to know: In our scenario, users are not able to track GPS
coordinates of other users, which would violate privacy. They only receive
messages about what they are obliged to do. Furthermore, private and sen­
sible user data such as working places, kindergarten or home addresses must
not be revealed to a central server.

6 Implementat ion Issues

The Distributed TAS architecture shown in Fig. 1 has been implemented proto-
typically in order to prove the feasibility of our approach. As smart devices we
used smartphones with the Android operating system. The smartphones are the
mobile clients of the central coordination server.

The client application (= app) has been developed with the Android applica­
tion framework that provides access to the local device resources like hardware

sensors of the device and the data of all installed applications. So far, commercial
CEP engines have not been developed for mobile operating systems. However,
the popular open source CEP engine Esper12 (in version 3.2) has recently been
ported to the Android platform: the open source CEP engine Asper13 is based
on Esper 4.9.0. Asper provides the most important features of powerful CEP
systems for the Android platform, so that we could use it with minor problems
as the code base for our Distributed TAS system.

We identity three different types of communication between actors in out
architecture. The mobile devices send their events to the HTTP interface of the
central coordination server. On the coordination server the incoming events are
processed by the open-source CEP engine Esper. The coordination server pushes
notifications to smarphone devices (e.i. Android applications) using Google Cloud
Messaging for Android (GCM)14. GCM enables asynchronous and resource-
saving communication from the TAS server to the mobile CEP application. As
illustrated in Fig. 1, both the Android application and the central server have
access to cloud services by means of so-called channels, which are implemented as
web services. By specific connectors, those web services provide further context
information like weather and traffic data.

As our implementation responds to a prototype and its objetive it to proof
the viability of our architecture and its benefits, we have not considered necessary
to include security mechanisns to guárante personal data may not be leaked out
from the server. However, it is obvious that the alternative scenario where all
GPS information is shared p2p shows more privacy risks. For similar reasons, a
rule editor has not been developed. Thus, all user rules are coded according to
the pseudo language described in section 3 and stored in-memory.

7 Related Work

The employment of Complex Event Processing for Task Automation Services
is a novel field of application, where only very first approaches have been pub­
lished [5]. In general, related work shows task automation approaches conceived
to solved particular problems, that lack of the flexibility and personalization ca­
pabilities that characterize TAS's. Automating business rules correlating events
coming from different processes is a good showcase with lots of researches be­
hind [6]. Smarthome automations constitute a renewed usecase where smartde-
vices can coordinate to work in a desired way e.g. for energy saving [7].

On the other hand, commercial TAS like Ifttt or Zapier lack of CEP i.e. they
process incoming events as soon as they arrive, so rules are always triggered by a
single event. This is not the case of automations on the Internet of Things (IoT)
field. Several authors propose systems where built-in rules are triggered by corre­
lated events coming from different sensors [2,4, 8]. SPITFIRE platform [5] is close
to TAS's vision, since it provides a user interface to set up rules (called queries).

h t tp : / / e spe r . codehaus .o rg /
h t tps : / /g i thub .com/p l ingp l ing /aspe r
ht tp: / /developer .android.com/google/gcm/index.html

http://esper.codehaus.org/
https://github.com/plingpling/asper
http://developer.android.com/google/gcm/index.html

However, they only consider connecting sensors and actuators, not cloud services.
They do not address task coordination either. CASAS [13] constitutes a differ­
ent approach, it uses a Machine Learning algorithm to learn from the resident's
daily activities and generate automation polices that mimic these patterns.

In general, CEP engines have been primarily developed for the emerging
market of business information systems. The engines are deployed on powerful
server systems and process high level events from backend business processes.
Commercial vendors of CEP engines have focused on this profitable enterprise
market segment [15]. Until a few years ago, mobile operating systems were rather
inefficient and the computing resources of mobile devices were very limited. As
a consequence, vendors have not been interested to develop a CEP engine for
this area of use. Along with the rise of computing power of mobile devices,
recently, first proposals demonstrate the applicability of CEP for processing
data streams emitted by mobile devices, in particular by the embedded sensors.
However, either the mobile devices serve merely as special event sources [1],
[12] or the sensor data are only preprocessed on the mobile device in order to
achieve context-aware event filtering [11]. The real event processing of mobile
data sources is usually still executed on powerful backend servers. The execution
of sophisticated event processing rules directly on the mobile device is still a
rather new approach [14]. Consequently, mixed execution profiles for distributed
event processing have not been proposed so far.

8 Conclusion

Task Automation Services is an emerging area with multiple application domains
and challenging technical implications. In this paper, we presented an innovative
system architecture for context-aware and personalized TAS. Applying Complex
Event Processing and mixed execution profiles are novel concepts for TAS. The
proposed TAS architecture possess the following properties.

— Situation- and Context-Awareness: The built-in sensors of smartphones or
other smart devices provide the TAS system with a continuous stream of
context data. Event processing rules are used to aggregate and correlate the
sensor data to more abstract and more meaningful situation data.

— Coordination: We introduced a TAS cloud server that provides cross-user
coordination exploiting the context data of each participant.

— Real-time Processing: The real-time capabilities of CEP are exploited on the
cloud-based TAS as well as on the device-based TAS.

— Distributed Processing: by mixed execution profiles combine the advantages
of formerly separated web-driven as well as device-driven execution profiles.

In summary, our approach leads to a new quality of TAS: Distributed Task
Automation Services.

In future work, we intend to investigate more complex task coordination sce­
narios with advanced mixed execution profiles. In particular, the incorporation of
diverse smart devices, such as smart home automation devices or smart vehicles,
seems to be very promising.

A c k n o w l e d g e m e n t This work was part ly funded by the Spanish Ministry of
Economy and Competitiveness through the project Calista (TEC2012-32457).

References

1. Amade, D.: Joining oracle complex event processing and j2me to react to location
and positioning events, http://www.oracle.com/technetwork/articles/amadei-cep-
090595.html (2010)

2. Arcelus, A., Jones, M.H., Goubran, R., Knoefel, F.: Integration of Smart Home
Technologies in a Health Monitoring System for the Elderly. In: 21st International
Conference on Advanced Information Networking and Applications Workshops
(AINAW'07). vol. 2, pp. 820-825. IEEE (2007)

3. Bruns, R., Dunkel, J.: Event-Driven Architecture: Softwarearchitektur für ereignis-
gesteuerte Gescháftsprozesse. Springer-Verlag (2010)

4. Byun, J., Jeon, B., Noh, J., Kim, Y., Park, S.: An intelligent self-adjusting sensor
for smart home services based on ZigBee communications. IEEE Transactions on
Consumer Electronics 58(3), 794-802 (Aug 2012)

5. Chatzigiannakis, I., Hasemann, H., Karnstedt, M., Kleine, O., Kroller, A., Leggieri,
M., Pfisterer, D., Romer, K., Truong, C : True self-configuration for the IoT. In:
2012 3rd IEEE International Conference on the Internet of Things, pp. 9-15. IEEE
(Oct 2012)

6. Daum, M., Gotz, M., Domaschka, J.: Integrating CEP and BPM. In: Proceedings
of the 6th ACM International Conference on Distributed Event-Based Systems -
DEBS '12. pp. 157-166. ACM Press, New York, New York, USA (Jul 2012)

7. Di Giorgio, A., Pimpinella, L.: An event driven Smart Home Controller enabling
consumer economic saving and automated Demand Side Management. Applied
Energy 96, 92-103 (Aug 2012)

8. Domonte, E.P.: An Integrated and Low Cost Home Automation System with Flex­
ible Task Scheduling. In: XV WORKSHOP OF PHYSICAL AGENTS, pp. 1-10.
No. June, Leon (2014)

9. Etzion, O., Niblett, P.: Event Processing in Action. Manning (2010)
10. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing

in Distributed Enterprise Systems. Addison-Wesley (2002)
11. Mohomed, I., Misra, A., Ebling, M., Jerome, W.F.: Harmoni: Context-aware fil­

tering of sensor data for continuous remote health monitoring. In: Proceedings of
Pervasive Computing and Communications (PerCom). pp. 248-251. IEEE Com­
puter Society (2008)

12. Mouttham, A., Peyton, L., Eze, B., Saddik, A.E.: Event-driven data integration for
personal health monitoring. Journal of Emerging Technologies in Web Intelligence
pp. 144-148 (2009)

13. Rashidi, P., Cook, D.: Keeping the Resident in the Loop: Adapting the Smart
Home to the User. IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans 39(5), 949-959 (Sep 2009)

14. Stipkovic, S., Bruns, R., Dunkel, J.: Event-based smartphone sensor processing
for ambient assisted living. 2013 IEEE Eleventh International Symposium on Au­
tonomous Decentralized Systems (ISADS) pp. 221-227 (2013)

15. Vidackovic, K., Renner, T., Rex, S., Fraunhofer IAO, S.: Marktübersicht Real-
Time-Monitoring-Software: Event-Processing-Tools im Uberblick. Fraunhofer-
Verlag (2010), h t t p : / / b o o k s , google. de/books?id=rvbUXwAACAAJ

http://www.oracle.com/technetwork/articles/amadei-cep090595.html
http://www.oracle.com/technetwork/articles/amadei-cep090595.html
http://books

