Skip to main content

On the Application of Co-Operative Swarm Optimization in the Solution of Crystal Structures from X-Ray Diffraction Data

  • Conference paper
  • First Online:
Advances in Swarm and Computational Intelligence (ICSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9140))

Included in the following conference series:

Abstract

A co-operative method based on five biology-related optimization algorithms is used in solving crystal structures from X-ray diffraction data. This method does not need essential effort for its adjustment to the problem in hand but demonstrates high performance. This algorithm is compared with a sequential two-level genetic algorithm, a multi-population parallel genetic algorithm and a self-configuring genetic algorithm as well as with two problem specific approaches. It is demonstrated on a special crystal structure with 7 atoms and 21 degrees of freedom on which the co-operative swarm optimization algorithm exhibits comparative reliability but works faster than other used algorithms. Perspective directions for improving the approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Inorganic Crystal Structure Database. FIZ Karlsruhe. http://www.fiz-karlsruhe.de/icsd.html

  2. Cambridge Structural Database. Cambridge Crystallographic Data Centre. http://www.ccdc.cam.ac.uk/products/csd/

  3. Dinnebier, R.E., Billinge, S.J.L.: Powder diffraction theory and practice. Royal Society of Chemistry, 507 (2008)

    Google Scholar 

  4. Young, R.A.: The rietveld method, p. 298. Oxford University Press (1995)

    Google Scholar 

  5. David, W.I.F., Shankland, K.: Structure determination from powder diffraction data. Acta Cryst. A64, 52–64 (2008)

    Article  Google Scholar 

  6. Cerny, R., Favre-Nicolin, V.: Direct space methods of structure determination from powder diffraction: principles, guidelines, perspectives. Z. Kristallogr. 222, 105–113 (2007)

    Google Scholar 

  7. Kenneth, D., Harris M.: Fundamentals and applications of genetic algorithms for structure solution from powder X-ray diffraction data. Computational Materials Science 45(1) (2009)

    Google Scholar 

  8. Semenkin, E., Semenkina, M.: Self-configuring genetic algorithm with modified uniform crossover operator. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012, Part I. LNCS, vol. 7331, pp. 414–421. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Akhmedova, Sh., Semenkin, E.: Co-operation of biology related algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2013), pp. 2207–2214 (2013)

    Google Scholar 

  10. Yakimov, Y.I., Semenkin, E.S., Yakimov, I.S.: Two-level genetic algorithm for a fullprofile fitting of X-ray powder patterns. Z. Kristallogr. (30), 21–26 (2009)

    Google Scholar 

  11. Solovyov, L.A.: Full-profile refinement by derivative difference minimization. J. Appl. Cryst. 3, 743–749 (2004)

    Article  Google Scholar 

  12. Yakimov, Y.I., Kirik, S.D., Semenkin, E.S., Solovyov, L.A., Yakimov, I.S.: The evolutionary method of modelling a crystal structure by powder diffraction data. Journal of Siberian Federal University (Chemistry) 6(2), 180–191 (2013)

    Google Scholar 

  13. Burakov, S.V., et al.: Multi-population two-level genetic algorithm for determination of crystal structure from X-ray powder diffraction data. In: Proceedings of Conference APMSIT-2014, Shanghai, China, pp. 13–14 (2014)

    Google Scholar 

  14. Semenkin, E., Semenkina, M.: Stochastic models and optimization algorithms for decision support in spacecraft control systems preliminary design. In: Ferrier, J.-L., Bernard, A., Gusikhin, O., Madani, K. (eds.) ICINCO 2012. LNEE, vol. 283, pp. 51–65. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural networks, IV, pp. 1942–1948 (1995)

    Google Scholar 

  16. Yang, Ch., Tu, X., Chen, J.: Algorithm of marriage in honey bees optimization based on the wolf pack search. In: International Conference on Intelligent Pervasive Computing, pp. 462–467 (2007)

    Google Scholar 

  17. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Yang, X.S., Deb, S.: Cuckoo search via levy flights. In: World Congress on Nature & Biologically Inspired Computing, pp. 210–214. IEEE Publications (2009)

    Google Scholar 

  19. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 65–74. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Akhmedova, S., Semenkin, E.: Data mining tools design with co-operation of biology related algorithms. In: Tan, Y., Shi, Y., Coello, C.A. (eds.) ICSI 2014, Part I. LNCS, vol. 8794, pp. 499–506. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  21. Favre-Nicolin, V., Cerny, R.: FOX “free objects for crystallography”: a modular approach to ab initio structure determination from powder diffraction. J. Appl. Cryst. 35, 734–743 (2002)

    Article  Google Scholar 

  22. Griffin, T.A.N., Shankland, K., Van de Streek, J., Cole, J.: GDASH: a grid-enabled program for structure solution from powder diffraction data. J. Appl. Cryst. 42, 356–359 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenii Sopov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zaloga, A. et al. (2015). On the Application of Co-Operative Swarm Optimization in the Solution of Crystal Structures from X-Ray Diffraction Data. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds) Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science(), vol 9140. Springer, Cham. https://doi.org/10.1007/978-3-319-20466-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20466-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20465-9

  • Online ISBN: 978-3-319-20466-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics