Skip to main content

Improved Blind Recovery Algorithm for Underdetermined Mixtures by Compressed Sensing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9141))

Abstract

Linear underdetermined blind source separation (UBSS) is a useful but difficult problem for its illness settings. In this paper, based on compressed sensing (CS) theory, the model inherent connections between UBSS and CS is analysed on the basis of sparsity of the source signals. The mathematical model of underdetermined blind source recovery by CS is built. In order to build the estimated measurement matrix, the source number and mixing matrix are estimated using the refined clustering procedure based on unsupervised robust C prototypes (URCP) method, the measurement matrix and the measurement equation are obtained according to the proposed combined underdetermined blind source recovery model. Then, the proposed blind compressed recovery (BCR) algorithm is derived based on the signal sparse compressive sampling matching pursuit (SSCoSaMP) scheme, which realizes the reconstruction of the underdetermined sparse source signals efficiently. Simulations are provided to show the effectiveness of the proposed method using artificial data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plumbley, M.D., Blumensath, T., Daudet, L., Gribonval, R., Davies, M.E.: Sparse representations in audio music: from coding to source separation. Proc. of IEEE 98(6), 995–1005 (2010)

    Article  Google Scholar 

  2. Liu, B., Reju, V.G., Khong, A.W.H.: A linear source recovery method for underdetermined mixtures of uncorrelated AR-model signals without sparseness. IEEE Trans. Signal Process. 62(19), 4947–4958 (2014)

    Article  MathSciNet  Google Scholar 

  3. Gu, F.L., Zhang, H., Wang, W.W., Zhu, D.S.: PARAFAC-based blind identification of underdetermined mixtures using Gaussian mixture model. Circuits Syst. Signal Process. 33(6), 1841–1857 (2014)

    Article  MathSciNet  Google Scholar 

  4. Li, Y., Cichocki, A., Amari, S.: Analysis of sparse representation and blind source separation. Neural Comput. 16(6), 1193–1234 (2004)

    Article  MATH  Google Scholar 

  5. Aissa-El-Bey, A., Linh-Trung, N., Abed-Meraim, K., Belouchrani, A., Grenier, Y.: Underdetermined blind separation of nondisjoint sources in the time-frequency domain. IEEE Trans. Signal Process. 55(3), 897–907 (2007)

    Article  MathSciNet  Google Scholar 

  6. Georgiev, P.G., Theis, F., Cichocki, A.: Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16(4), 992–996 (2005)

    Article  Google Scholar 

  7. He, Z., Xie, S., Zhang, L., Cichocki, A.: A note on Lewicki-Sejnowski gradient for learning overcomplete representation. Neural Comput. 20(3), 636–643 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Yang, Z.Y., Tan, B.H., Zhou, G.X., Zhang, J.L.: Source number estimation and separation algorithms of underdetermined blind separation. Sci. China Ser. F 51(10), 1623–1632 (2008)

    Article  MATH  Google Scholar 

  9. Eldar, Y.C., Kutyniok, G.: Compressed sensing: theory and applications. Cambridge University Press, USA (2012)

    Book  Google Scholar 

  10. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Baraniuk, R.G.: Compressive sensing. IEEE Signal Proc. Mag. 24(4), 118–120 (2007)

    Article  Google Scholar 

  13. Davenport, M.A., Needell, D., Wakin, M.B.: Signal space CoSaMP for sparse recovery with redundant dictionaries. IEEE Trans. Inform. Theory 59(10), 6820–6829 (2013)

    Article  MathSciNet  Google Scholar 

  14. Frigui, H., Krishnapuram, R.: A robust algorithm for automatic extraction of an unknown number of clusters from noisy data. Pattern Recognit. Lett. 17(6), 1223–1232 (1996)

    Article  MATH  Google Scholar 

  15. Comon, P., Jutten, C.: Handbook of blind source separation: independent component analysis and applications. Elsevier, Amsterdam (2010)

    Google Scholar 

  16. Reju, V.G., Koh, S.N., Soon, I.Y.: An algorithm for mixing matrix estimation in instantaneous blind source separation. Signal Process. 89(9), 1762–1773 (2009)

    Article  MATH  Google Scholar 

  17. Duarte, M.F., Eldar, Y.C.: Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process. 59(9), 4053–4085 (2011)

    Article  MathSciNet  Google Scholar 

  18. Candes, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inform. Theory 51(12), 4203–4215 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tropp, J., Gilbert, A.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory 53(12), 4655–4666 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Needell, D., Tropp, J.A.: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. A 26(3), 301–321 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lv, Q., Zhang, X.D.: A unified method for blind separation of sparse sources with unknown source number. IEEE Signal Process. Let. 13(1), 49–51 (2006)

    Article  MathSciNet  Google Scholar 

  22. Giryes, R., Needell, D.: Near oracle performance and block analysis of signal space greedy methods, submitted for publication. arXiv: 1402. 2601 (2014)

    Google Scholar 

  23. Abrard, F., Deville, Y.: A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources. Signal Process. 85(7), 1389–1403 (2005)

    Article  MATH  Google Scholar 

  24. Li, R., Wang, F.S.: Blind dependent sources separation method using wavelet. Int. J. Comput. Appli. Tech. 41(3), 296–302 (2011)

    Article  Google Scholar 

  25. Yilmaz, O., Rickard, S.: Blind separation of speech mixtures via time-frequency masking. IEEE Trans. Signal Process. 52(7), 1830–1847 (2004)

    Article  MathSciNet  Google Scholar 

  26. Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Process. 81(11), 2353–2362 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fasong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, F., Li, R., Wang, Z., Li, D. (2015). Improved Blind Recovery Algorithm for Underdetermined Mixtures by Compressed Sensing. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds) Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science(), vol 9141. Springer, Cham. https://doi.org/10.1007/978-3-319-20472-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20472-7_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20471-0

  • Online ISBN: 978-3-319-20472-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics