Skip to main content

A Corpus-Sensitive Algorithm for Automated Tonal Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9110))

Abstract

A corpus-sensitive algorithm for tonal analysis is described. The algorithm learns a tonal vocabulary and syntax by grouping together chords that share scale degrees and occur in the same contexts and then compiling a transition matrix between these chord groups. When trained on a common-practice corpus, the resulting vocabulary of chord groups approximates traditional diatonic Roman numerals. These parameters are then used to determine the key and vocabulary items used in an unanalyzed piece of music. Such a corpus-based method highlights the properties of common-practice music on which traditional analysis is based, while offering the opportunity for analytical and pedagogical methods more sensitive to the characteristics of individual repertories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ponsford, D., Wiggins, G., Mellish, C.: Statistical learning of harmonic movement. J. New Music Res. 28(2), 150–177 (1999)

    Article  Google Scholar 

  2. Hedges, T., Roy, P., Pachet, F.: Predicting the composer and style of jazz chord progressions. J. New Music Res. 43(3), 276–290 (2014)

    Article  Google Scholar 

  3. Cope, D.: Experiments in music intelligence. In: Proceedings of the International Computer Music Conference, pp. 170–173. Computer Music Association, San Francisco (1987)

    Google Scholar 

  4. Cope, D.: Computer Models of Musical Creativity. MIT Press, Cambridge (2005)

    Google Scholar 

  5. Rohrmeier, M., Cross, I.: Statistical properties of tonal harmony in Bach’s Chorales. In: Proceedings of the International Conference on Music Perception and Cognition, ICMPC, pp. 619–627. Sapporo (2008)

    Google Scholar 

  6. Quinn, I.: Are pitch-class profiles really key for key? Zeitschrift der Gesellschaft der Musiktheorie 7, 151–163 (2010)

    Google Scholar 

  7. Quinnn, I., Mavromatis, P.: Voice leading and harmonic function in two chorale corpora. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS, vol. 6726. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Krumhansl, C.L.: The Cognitive Foundations of Musical Pitch. Oxford University Press, Oxford (1990)

    Google Scholar 

  9. Temperley, D.: Music and Probability. The MIT Press, Cambridge (2007)

    MATH  Google Scholar 

  10. Chew, E.: Mathematical and Computational Modeling of Tonality: Theory and Applications. Springer, New York (2014)

    Book  MATH  Google Scholar 

  11. White, C., Quinn, I.: The Yale-classical archives corpus. Poster presented at: International Conference for Music Perception and Cognition. Seoul, South Korea (2014)

    Google Scholar 

  12. Cuthbert, M.S., Ariza, C.: Music21: a toolkit for computer-aided musicology and symbolic music data. In: Proceedings of the International Symposium on Music Information Retrieval, ISMIR, Utrecht, pp. 637–42 (2010)

    Google Scholar 

  13. White, C.: An alphabet reduction algorithm for chordal N-grams. In: Yust, J., Wild, J. (eds.) MCM 2013. LNCS, vol. 7937. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Jurafksy, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall, Upper Saddle River (2000)

    Google Scholar 

  15. Zikanov, K.: Metric Properties of Mensural Music: An Autocorrelation Approach. National Meeting of the American Musicological Society, Milwaukee (2014)

    Google Scholar 

  16. Huron, D.: Sweet Anticipation: Music and the Psychology of Expectation. The MIT Press, Cambridge (2006)

    Google Scholar 

  17. Byros, V.: Foundations of tonality as situated cognition, 1730–1830. Ph.D dissertation. Yale University (2009)

    Google Scholar 

  18. White, C.: Changing styles, changing corpora, changing tonal models. Music Percept. 31(2), 244–253 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Wm. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

White, C.W. (2015). A Corpus-Sensitive Algorithm for Automated Tonal Analysis. In: Collins, T., Meredith, D., Volk, A. (eds) Mathematics and Computation in Music. MCM 2015. Lecture Notes in Computer Science(), vol 9110. Springer, Cham. https://doi.org/10.1007/978-3-319-20603-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20603-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20602-8

  • Online ISBN: 978-3-319-20603-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics