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Abstract. A piano fingering is an indication of which finger is to be used
to play each note in a piano composition. Good piano fingerings enable
pianists to study, remember and play pieces in an optimal way. In this
paper, we propose a tabu search algorithm to find a good piano fingering
automatically and in a short amount of time. An innovative feature of
the proposed algorithm is that it implements an objective function that
takes into account the characteristics of the pianist’s hand and that it
can be used for complex polyphonic music.

Keywords: Piano Fingering, Tabu Search, Metaheuristics, OR in Mu-
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1 Introduction

Both pianists and composers often add a fingering to sheet music in order to
indicate the appropriate finger that should be used to play each note. Piano
fingerings are important as not every finger is equally suited to play each note,
and some combinations of fingers are better suited to play certain note sequences
than others [?]. Additionally, having a well thought-out piano fingering can help
a pianist to study and remember a piece. It can also enhance the interpretation
and the musicality of a performance [?].

Developing a high-quality fingering requires a considerable amount of time
and expertise. For that reason, in this paper we develop an algorithm to auto-
matically determine a good piano fingering. The purpose of the algorithm is to
help pianists with little experience in deciding on a good fingering, as well as all
pianists who quickly want to obtain a fingering they can use as a starting point.

In this paper, we model the generation of a good piano fingering as a com-
binatorial optimisation problem, in which a finger has to be assigned to every
note in the piece. The quality of a fingering is evaluated by means of an objective
function that measures playability. This objective function takes into account the
characteristics of the player’s hands. The proposed algorithm is a tabu search
(TS) heuristic, capable to find a good fingering solution for a complex polyphonic
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piano piece in a reasonable amount of execution time. This technique has been
successfully used in the field of computer-aided composing [?].

This paper is divided into six sections. Section ?? gives a short overview
of the literature concerning the generation of piano fingerings and algorithms
developed to solve this problem. In Section ??, a mathematical formulation of
the problem is introduced. Section ?? explains the tabu search algorithm in
detail. In Section ??, we show and discuss an example of a fingering generated
by the TS for an existing piece of music. The final section gives some conclusions
and suggestions for future research.

2 Literature Review

In the 18th century, exercises to learn frequently used fingering combinations flu-
ently were published for the first time. Carl Philipp Emanuel Bach was among
the first musicians to write down an entire set of rules for piano fingering. Pre-
viously, such rules were only transmitted orally through lessons. In the 19th
century, many composers followed his example [?]. At the end of the 20th cen-
tury, the first attempts to generate a mathematical formulation that could model
a piano fingering and develop a suitable algorithm were published, as we show
in the next subsection. Similar research has been carried out among others for
string instruments [?].

2.1 Fingering Quality

In order to evaluate a piano fingering, it is necessary to quantify it quality. Three
important dimensions of a piano fingering add to this quality. The main element
is the ease of playing and this is where this research focuses on. Additional
dimensions that add to the quality of a fingering are the ease of memorisation
and the facilitation of the interpretation [?].

The dominant approach for evaluating the quality of a piano fingering us-
ing an objective function, which is also followed in this research, is based on
hand-made rules [?][?][?]. Other strategies include using a machine learning ap-
proach such as Markov Models based on transition matrices [?][?][?][?] or Hidden
Markov Models (HMM) [?].

In order to evaluate the playability of a fingering, the set of rules proposed
by Parncutt et al. [?] and Parncutt [?] serve as the basis for this research. Every
source of difficulty in a fingering, both monophonic and polyphonic, is assigned a
cost. Every cost factor is attributed a weight. The playability measure is an ob-
jective function that consists of the weighted sum of costs and is to be minimised.
This approach has the advantage that pianists can express their trade-offs be-
tween the sources of difficulty. This can be done by assigning different weights to
each source of difficulty in the objective function. Parncutt’s original cost factors
for piano fingering have been expanded by Jacobs [?] and Lin and Liu [?]. More
recently, some improvements and additions were made by the authors of this
paper [?]. This latter set of rules is used in this research. Issues such as personal
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preferences, the use of the left hand and the difference between playing a black
and white key have been ignored in the past [?], but are taken into account in
this paper.

2.2 Algorithms for Automatic Generation of Fingerings

In many papers, dynamic programming is used to find optimal piano finger-
ings according to the selected objective function. Dijkstra’s algorithm is used
by Parncutt et al. [?] on monophonic music and by Al Kasimi et al. [?] on
monophonic pieces with some simple polyphonic chords. Similar dynamic pro-
gramming algorithms have been used in literature by Robine [?] and Hart et
al. [?] on monophonic music. A rule-based expert system that optimises a fitness
function for similar music was developed by Viana et al. [?] to implement their
Intelligent System for Piano Fingering Learning Aid (SIEDP). For the HMM-
model in monophonic music, Yonebayashi et al. used a Viterbi algorithm [?].
Although some improvements have been made to reduce the computing time of
the aforementioned algorithms, it is often impossible for them to deal with com-
plex polyphonic pieces (where simultaneous notes can have different starting and
ending times and where hence a graphical representation would no longer work).
For this reason, we develop an algorithm that can deal with complex polyphony
in an effective and efficient way. This algorithm is explained in Section ??. In
the next section, we mathematically formulate the problem of finding a piano
fingering .

3 Problem Description

When generating a piano fingering, it is necessary to decide which finger should
play each note. Each finger is represented using the traditional coding from 1
(thumb) to 5 (little finger).

In order to consider piano fingering as an optimisation problem, we define
an objective function that measures the quality of a solution by looking at the
playability of the piece. This objective function was described by Balliauw [?]
as an adaptation of the work of Parncutt et al. [?] and Jacobs [?] and allows to
work with both the right and the left hand.

The objective function takes into account a distance matrix, displayed in Ta-
ble ??. This contains information for each finger pair about the distances that
are easy and difficult to play, respectively called Rel (relaxed range), Comf (com-
fortable range) and Prac (practically playable range). These allowed distances
can be adapted by the user of the algorithm according to the biomechanics of
his or her hand.

The objective function consists of three sets of rules. Using the distance
matrix, a first set of rules compares the actual distance (calculated by subtracting
the corresponding values of the keys in Fig. ??) and the allowed distance between
two simultaneous or consecutive notes for the proposed pair of fingers to play
these two notes. A penalty score is applied when the actual distance is larger



4 M. Balliauw, D. Herremans, D. Palhazi Cuervo and K. Sörensen

than the different types of allowed distances. As Jacobs [?] argued, the distances
in the previous research of Parncutt et al. [?] were not accurate. To calculate
these penalties more accurately, the authors increased in previous work [?] the
distances between E and F and between B and C to two half notes, to equal the
distances between other adjacent white keys on a piano keyboard, as illustrated
in Fig. ??. The second set of rules is implemented to prevent unnecessary and
inconvenient hand changes. The third group of rules prevents difficult finger
movements in monophonic music. In this third set, two additional rules proposed
by Balliauw [?] promote the choice of logical, commonly used fingering patterns.
For a more detailed discussion of the rules and distances, we refer to the actual
references.

Fig. 1. Piano keyboard with additional imaginary black keys [?].

The weighted penalty scores of all rules together, displayed in Table ??,
are summed to obtain the objective function value. As this value indicates the
difficulty of the fingering, it has to be minimised.

Table 1. Example distance matrix that describes the pianist’s right hand [?].

Finger pair MinPrac MinComf MinRel MaxRel MaxComf MaxPrac

1-2 -10 -8 1 6 9 11
1-3 -8 -6 3 9 13 15
1-4 -6 -4 5 11 14 16
1-5 -2 0 7 12 16 18
2-3 1 1 1 2 5 7
2-4 1 1 3 4 6 8
2-5 2 2 5 6 10 12
3-4 1 1 1 2 2 4
3-5 1 1 3 4 6 8
4-5 1 1 1 2 4 6



Generating Fingerings for Polyphonic Piano Music with Tabu Search 5

T
a
b
le

2
.

S
et

o
f

ru
le

s
co

m
p

o
si

n
g

th
e

o
b

je
ct

iv
e

fu
n
ct

io
n

[?
].

R
u
le

A
p
p
li
c
a
ti
o
n
D
e
sc
ri
p
ti
o
n

S
c
o
re

1
A

ll
F

o
r

ev
er

y
u
n
it

th
e

d
is

ta
n
ce

b
et

w
ee

n
tw

o
co

n
se

cu
ti

v
e

n
o
te

s
is

b
el

ow
M
i
n
C
o
m
f

o
r

ex
ce

ed
s

M
a
x
C
o
m
f
.

+
2

2
A

ll
F

o
r

ev
er

y
u
n
it

th
e

d
is

ta
n
ce

b
et

w
ee

n
tw

o
co

n
se

cu
ti

v
e

n
o
te

s
is

b
el

ow
M
i
n
R
e
l

o
r

ex
ce

ed
s
M
a
x
R
e
l
.

+
1

3
M

o
n
o
p
h
o
n
ic

If
th

e
d
is

ta
n
ce

b
et

w
ee

n
a

fi
rs

t
a
n
d

th
ir

d
n
o
te

is
b

el
ow

M
i
n
C
o
m
f

o
r

ex
ce

ed
s
M
a
x
C
o
m
f
:

a
d
d

o
n
e

p
o
in

t.
In

a
d
d
it

io
n
,

if
th

e
p
it

ch
o
f

th
e

se
co

n
d

n
o
te

is
th

e
m

id
d
le

o
n
e,

is
p
la

y
ed

b
y

th
e

th
u
m

b
a
n
d

th
e

d
is

ta
n
ce

b
et

w
ee

n
th

e
fi
rs

t
a
n
d

th
ir

d
n
o
te

is
b

el
ow

M
i
n
P
r
a
c

o
r

ex
ce

ed
s
M
a
x
P
r
a
c
:

a
d
d

a
n
o
th

er
p

o
in

t.
F

in
a
ll
y,

if
th

e
fi
rs

t
a
n
d

th
ir

d
n
o
te

h
av

e
th

e
sa

m
e

p
it

ch
,

b
u
t

a
re

p
la

y
ed

b
y

a
d
iff

er
en

t
fi
n
g
er

:
a
d
d

a
n
o
th

er
p

o
in

t.

+
1

+
1

+
1

4
M

o
n
o
p
h
o
n
ic

F
o
r

ev
er

y
u
n
it

th
e

d
is

ta
n
ce

b
et

w
ee

n
a

fi
rs

t
a
n
d

th
ir

d
n
o
te

is
b

el
ow

M
i
n
C
o
m
f

o
r

ex
ce

ed
s

M
a
x
C
o
m
f
.

+
1

5
M

o
n
o
p
h
o
n
ic

F
o
r

ev
er

y
u
se

o
f

th
e

fo
u
rt

h
fi
n
g
er

.
+

1
6

M
o
n
o
p
h
o
n
ic

F
o
r

th
e

u
se

o
f

th
e

th
ir

d
a
n
d

th
e

fo
u
rt

h
fi
n
g
er

(i
n

a
n
y

co
n
se

cu
ti

v
e

o
rd

er
).

+
1

7
M

o
n
o
p
h
o
n
ic

F
o
r

th
e

u
se

o
f

th
e

th
ir

d
fi
n
g
er

o
n

a
w

h
it

e
k
ey

a
n
d

th
e

fo
u
rt

h
fi
n
g
er

o
n

a
b
la

ck
k
ey

(i
n

a
n
y

co
n
se

cu
ti

v
e

o
rd

er
).

+
1

8
M

o
n
o
p
h
o
n
ic

W
h
en

th
e

th
u
m

b
p
la

y
s

a
b
la

ck
k
ey

:
a
d
d

a
h
a
lf

p
o
in

t.
A

d
d

o
n
e

m
o
re

p
o
in

t
fo

r
a

d
iff

er
en

t
fi
n
g
er

u
se

d
o
n

a
w

h
it

e
k
ey

ju
st

b
ef

o
re

a
n
d

o
n
e

ex
tr

a
fo

r
o
n
e

ju
st

a
ft

er
th

e
th

u
m

b
.

+
0
.5

+
1

+
1

9
M

o
n
o
p
h
o
n
ic

W
h
en

th
e

fi
ft

h
fi
n
g
er

p
la

y
s

a
b
la

ck
k
ey

:
a
d
d

ze
ro

p
o
in

ts
.

A
d
d

o
n
e

m
o
re

p
o
in

t
fo

r
a

d
iff

er
en

t
fi
n
g
er

u
se

d
o
n

a
w

h
it

e
k
ey

ju
st

b
ef

o
re

a
n
d

o
n
e

ex
tr

a
fo

r
o
n
e

ju
st

a
ft

er
th

e
fi
ft

h
fi
n
g
er

.
+

1
+

1
1
0

M
o
n
o
p
h
o
n
ic

F
o
r

a
th

u
m

b
cr

o
ss

in
g

o
n

th
e

sa
m

e
le

v
el

(w
h
it

e-
w

h
it

e
o
r

b
la

ck
-b

la
ck

).
+

1
1
1

M
o
n
o
p
h
o
n
ic

F
o
r

a
th

u
m

b
o
n

a
b
la

ck
k
ey

cr
o
ss

ed
b
y

a
d
iff

er
en

t
fi
n
g
er

o
n

a
w

h
it

e
k
ey

.
+

2
1
2

M
o
n
o
p
h
o
n
ic

F
o
r

a
d
iff

er
en

t
fi
rs

t
a
n
d

th
ir

d
n
o
te

,
p
la

y
ed

b
y

th
e

sa
m

e
fi
n
g
er

,
a
n
d

th
e

se
co

n
d

p
it

ch
b

ei
n
g

th
e

m
id

d
le

o
n
e.

+
1

1
3

A
ll

F
o
r

ev
er

y
u
n
it

th
e

d
is

ta
n
ce

b
et

w
ee

n
tw

o
fo

ll
ow

in
g

n
o
te

s
is

b
el

ow
M
i
n
P
r
a
c

o
r

ex
ce

ed
s
M
a
x
P
r
a
c
.

+
1
0

1
4

P
o
ly

p
h
o
n
ic

A
p
p
ly

ru
le

s
1
,

2
(b

o
th

w
it

h
d
o
u
b
le

d
sc

o
re

s)
a
n
d

1
3

w
it

h
in

o
n
e

ch
o
rd

.
1
5

A
ll

F
o
r

co
n
se

cu
ti

v
e

sl
ic

es
co

n
ta

in
in

g
ex

a
ct

ly
th

e
sa

m
e

n
o
te

s
(w

it
h

id
en

ti
ca

l
p
it

ch
es

),
p
la

y
ed

b
y

a
d
iff

er
en

t
fi
n
g
er

,
fo

r
ea

ch
d
iff

er
en

t
fi
n
g
er

.
+

1



6 M. Balliauw, D. Herremans, D. Palhazi Cuervo and K. Sörensen

The problem description also takes into account one hard constraint. This
constraint enforces that a single finger cannot be used to play two different,
simultaneous notes, as this is not feasible to execute on a real piano.

4 Tabu Search Algorithm

A common approach to solve combinatorial optimisation problems is the use
of exact algorithms, that ensure finding the optimal solution. The problem with
this approach is that in the worst case the execution time can grow exponentially
with the size of the instance treated. For this reason, they are often suited to deal
with short or simple instances only. Metaheuristics form an alternative approach
to generate good solutions for complex problems (often involving large and com-
plex instances) in a reasonable amount of execution time. Several metaheuristic
frameworks have been proposed in the literature, all of which offer guidelines to
build heuristic algorithms [?].

Different categories of metaheuristics exist, such as constructive, population-
based and local search [?]. In this research we develop a local search heuristic to
generate piano fingerings for complex polyphonic music, as this class of heuris-
tics better allows to take the characteristics of the problem into account [?].
Local search heuristics start from a current solution, to which small, incremen-
tal changes are made, called moves. All moves performing the same changes are
part of the same move type. The set of solutions that can be reached from the cur-
rent solution by a certain move type is called the neighbourhood of the solution.
A local optimum is reached when the neighbourhood contains no improvement
for the current solution [?].

An algorithm can escape from such a local optimum or avoid getting trapped
into cycles by using a tabu list. This list contains a number of moves that were
performed right before the current move and that are excluded from the neigh-
bourhood of the current solution. These moves are tabu active. The length of the
tabu list is called tabu tenure. The move with the best objective function value
from this neighbourhood is performed, even if it worsens the current solution. In
this way, the algorithm avoids getting trapped into cycles and can explore the
solution space around the local optimum to eventually arrive at a better solution.
The tabu tenure and the number of allowed iterations without improvement are
the two parameters that define a tabu search [?].

When no more improvements can be made to a local optimum within one
neighbourhood, the algorithm switches to another neighbourhood, defined by a
different move type. This strategy is similar to that implemented by the Variable
Neighbourhood Search (VNS) [?].

In this paper, finding a good piano fingering is modelled as a combinatorial
optimisation problem. When this problem becomes larger (as is often the case),
the number of possible solutions grows exponentially with the number of notes
in the piece (5n). To this end, we chose to develop a tabu search algorithm
(TS), as it has already been applied efficiently to many other combinatorial
optimisation problems such as the NP-hard travelling salesman problem [?] and
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vehicle routing problem [?]. More recently, it has also been used in the field of
music [?]. As a result, developing a TS algorithm was considered as a viable
choice in this paper.

The TS algorithm, displayed schematically in Algorithm ??, starts from a
random initial solution, and optimises the fingering for the right hand. The
optimisation processes for the left hand is identical and executed subsequently.
First, a preprocessing step Swap is applied to the initial solution. This step makes
significant improvements (i.e., reducing the objective function value f(S)) by
swapping two fingers throughout the entire piece. This preprocessing step has a
positive impact on the solution quality and reduces the required execution time.

Algorithm 1: TS algorithm for each hand

Input : File F containing the piece
Output: File F ′ with the generated fingering included

1 P ← Parse(F)
2 P ← P/{non-used hand}
3 Sbest ← Rand Sol(P)
4 Sbest ← Swap(Scur)
5 tabutenure = 0.5·Number Notes(P)
6 maxiters = 5·tabutenure
7 Init Tabu List(tabutenure)
8 T ← True
9 while T = True do

10 T ← False
11 for o ∈ O do
12 Snbh ← Sbest
13 Scur ← Sbest
14 i = 0
15 while i <maxiters do
16 N ← Neighbourhoodo(Scur)
17 N ← N/{s : s involve tij ∈ Tabu List}
18 Scur ← Best Sol(N )
19 Update Tabu List()
20 if f(Scur) < f(Snbh) then
21 Snbh ← Scur
22 i = 0

23 else
24 i← i + 1

25 if f(Snbh) < f(Sbest) then
26 Sbest ← Snbh

27 T ← True

28 Clear Tabu List()

29 F ′ ← Write(Sbest)



8 M. Balliauw, D. Herremans, D. Palhazi Cuervo and K. Sörensen

The main loop of the algorithm uses three neighbourhood operators, each
defined by a move type and executed consecutively. For each operator, the best
solution from the neighbourhood is selected with a steepest descent strategy. As
a result, the move that leads to the best fingering is chosen at each iteration.
A first neighbourhood, called Change1, is defined by a move type that changes
the finger of a note to any other possible finger. The move type Change2 is sim-
ilar to Change1, but it is expanded to two adjacent or simultaneous notes. This
move is useful in situations in which changing two adjacent notes simultane-
ously improves the solution but changing each note separately has a detrimental
effect on the fingering and is therefore discarded by Change1. To increase the
interchangeability of two fingers in polyphonic music, moves of the third type
SwapPart change the fingering of a note a from finger k to l, where the fingering
of all notes b (played with finger l, starting before the end of note a and ending
after the start of note a) are changed from l to k. An illustrative example of each
neighbourhood operator o ∈ O = {Change1, Change2, SwapPart} can be found
in Fig. ??.

(a) Change1 (b) Change2 (c) SwapPart

Fig. 2. Examples of each move explored in every neighbourhood considered by the
tabu search algorithm.

To perform tabu search using a neighbourhood, a tabu list is initialized after
the preprocessing step. The parameter tabutenure is defined as a percentage of
the number of notes played by a given hand. The tabu list considers changing or
swapping the fingering of a specific note i to fingering j as a forbidden move if
the couple tij is tabu active, i.e., it is on the tabu list. A couple tij becomes tabu
active after the fingering of note i has been moved to finger j and remains active
for a number of moves, equal to the tabu tenure. As a result, it is possible that
moving to the best neighbouring solution (that is not tabu) reduces the quality
of the current solution. The number of allowed iterations without improvement
is defined as a parameter, maxiters. This enables the algorithm to explore the
solution space around the current solution and escape from a local optimum,
given that enough iterations without improvement are allowed (here defined as
a percentage of the tabu tenure). A path to arrive in a different area of the
solution space and escape the local optimum can thus be pursued. This can be
observed in Fig. ??.

When the number of non-improving iterations using a certain neighbour-
hood reaches maxiters, the content of the tabu list is cleared and in order to
escape from the local optimum, the algorithm switches to the next neighbour-
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hood. When a loop through all neighbourhoods o ∈ O successfully improves the
solution S, a new iteration over all these neighbourhoods is executed. Otherwise,
the stopping criterion is met and the algorithm returns the best solution found.
This solution is outputted to a MusicXML file, which can be processed by open
source music sheet software, like MuseScore1.

5 Results

0 0.5 1 1.5 2 2.5 3 3.5 4

102.6

102.8

103

103.2

103.4

103.6

Runtime (s)

O
b
j
e
c
t
i
v
e
f
u
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c
t
i
o
n

Best solution

Current solution

Fig. 3. Evolution of the right hand score over time in the first variation on the Saraband
from Suite in D minor (HWV 437) by G.F. Händel.

Fig. ?? shows an example output of the described TS for the first variation
on the Saraband from G.F. Händels Suite in D minor (HWV 437). The algorithm
was run with all neighbourhood operators o ∈ O activated, the tabu tenure set
as 50% of the number of notes in the hand and the allowed iterations without
improvement set as 5 times the tabu tenure (i.e., 500%). These parameter set-
tings were chosen during a limited pilot study. The fingerings were generated
using the hand data shown in Table ?? and with the weights of the rules in the
objective function set to 1.

1 Available from musescore.org

musescore.org
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The output of the algorithm shows the first eight bars of the piece. The
execution time is very short (5 seconds in total and 4 seconds for the right
hand) and the objective function value was 712 in total (362 for the right hand).
The evolution of the right hand score over time is displayed in Fig. ??. Experts
(researchers and pianists) confirmed that the solution displayed in the output
in Fig. ?? is easily playable and thus forms a good fingering. However it is not
perfect, as for example can be seen in the fifth bar where the first note (A) is
played with finger 1, and the second (G), lower note with a 4. The algorithm
might be improved to reach even better solutions in future research.

Fig. 4. Output for the first eight bars of the first variation on the Saraband from Suite
in D minor (HWV 437) by G.F. Händel.

6 Conclusion and Future Research

In this paper, we described the problem of finding a good piano fingering as a
combinatorial optimisation problem. Different sources of difficulty modelled in
the implemented objective function allow to deal with complex polyphony, to
analyse the left and right hand, and to have the option to adapt some parame-
ters to personal preferences and biomechanics of the hand. We proposed a tabu
search algorithm for the generation of piano fingerings, minimising the objec-
tive function value. By generating a piano fingering for an existing piece, we
showed that the algorithm can find a good solution in a relatively short amount
of execution time.

In the future, a possible enhancement of the objective function could be
an even more accurate or detailed keyboard distance definition, accounting for
the asymmetrical positioning of the black keys. The algorithm could also be
expanded by including rules in the objective function that specify the interpre-
tation and memorisation aspects of a piano fingering. Examples of such rules
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could be the use of a strong finger (e.g., the thumb) on the first beat of a bar,
and using the same fingering patterns for identical note sequences. The objec-
tive function could also be improved by integrating models built by applying
machine learning techniques to a database of existing piano fingerings. In this
way, new rules could be defined and the weights of the different penalty scores
in the objective function could be optimised. Further adaptations of the musical
rules and interpretation of the outputs should always be verified by existing sheet
music and expert piano professionals. The algorithm could also benefit from the
inclusion of extra, more sophisticated neighbourhoods.

By taking into account musical sentences, a further improvement in both
solution quality and execution time could be attained. The algorithm now im-
proves an entire piece at once. When the piece would be split up into smaller
parts based on musical sentences, the decreased size of the neighbourhoods would
significantly speed up the execution time of the algorithm. Rules based on these
musical sentences might equally improve the solution quality.
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17. Sörensen, K., Glover, F.: Metaheuristics. In: Glass, S.I., Fu, M.C. (eds.) Encyclo-
pedia of Operations Research and Management Science, pp. 960–970 (2013)
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