Skip to main content

Constructing Geometrical Spaces from Acoustical Representations

  • Conference paper
  • First Online:
  • 2178 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9110))

Abstract

This paper presents several models for constructing geometrical spaces from acoustical representations. Through specific spectral representations and associated distance measures each model is designed to highlight or ignore certain types of relationships within the given pitch sets. Dimensionality reduction is employed to obtain low dimensional embeddings from spectral representations. The viability of these models is demonstrated for the resulting low dimensional embeddings with respect to a number of group actions including octave shifts, permutation, transposition and inversion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amiot, E.: The Torii of phases. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS, vol. 7937, pp. 1–18. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Balzano, G.J.: The group-theoretic description of 12-fold and microtonal pitch systems. Comput. Music J. 4(4), 66–84 (1980)

    Article  Google Scholar 

  3. Bartsch, M.A., Wakefield, G.H.: To catch a chorus: using chroma-based representations for audio thumbnailing. In: IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, pp. 15–18 (2001)

    Google Scholar 

  4. Callender, C.: Continuous harmonic spaces. J. Music Theor. 51(2), 277 (2007)

    Article  Google Scholar 

  5. Callender, C., Quinn, I., Tymoczko, D.: Generalized voice-leading spaces. Science 320(5874), 346–348 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carey, N., Clampitt, D.: Aspects of well-formed scales. Music Theor. Spectr. 11(2), 187–206 (1989)

    Article  Google Scholar 

  7. Chacón, C.E.C., Lattner, S., Grachten, M.: Developing tonal perception through unsupervised learning. In: Proceedings of the International Conference on Music Information Retrieval (ISMIR), Taipei, Taiwan (2014)

    Google Scholar 

  8. Chew, E.: Towards a mathematical model of tonality. Ph.D. thesis (2000)

    Google Scholar 

  9. Chew, E.: Mathematical and Computational Modeling of Tonality: Theory and Applications, vol. 204. Springer Science & Business Media, US (2013)

    MATH  Google Scholar 

  10. Chuan, C.H., Chew, E.: Polyphonic audio key finding using the spiral array CEG algorithm. In: International Conference on Multimedia and Expo, ICME, pp. 21–24 (2005)

    Google Scholar 

  11. Cohn, R.: Maximally smooth cycles, hexatonic systems, and the analysis of late-romantic triadic progressions. Music Anal. 15, 9–40 (1996)

    Article  Google Scholar 

  12. Cohn, R.: Neo-Riemannian operations, parsimonious trichords, and their “Tonnetz" representations. J. Music Theor. 41, 1–66 (1997)

    Article  Google Scholar 

  13. Douthett, J., Steinbach, P.: Parsimonious graphs: a study in parsimony, contextual transformations, and modes of limited transposition. J. Music Theor. 42, 241–263 (1998)

    Article  Google Scholar 

  14. Forte, A.: The Structure of Atonal Music. Yale University Press, New Haven (1973)

    Google Scholar 

  15. Fujishima, T.: Realtime chord recognition of musical sound: a system using common lisp music. In: Proceedings of the ICMC, pp. 464–467 (1999)

    Google Scholar 

  16. Gatzsche, G., Mehnert, M., Gatzsche, D., Brandenburg, K.: A symmetry based approach for musical tonality analysis. In: Proceedings of the International Conference on Music Information Retrieval (ISMIR), Vienna, Austria (2007)

    Google Scholar 

  17. Gómez, E., Bonada, J.: Tonality visualization of polyphonic audio. In: Proceedings of International Computer Music Conference, ICMC (2005)

    Google Scholar 

  18. Hall, R.W.: Linear contextual transformations. In: Quaderni di Matematica: Theory And. Applications of Proximity, Nearness and Uniformity (2009)

    Google Scholar 

  19. Humphrey, E.J., Cho, T., Bello, J.P.: Learning a robust tonnetz-space transform for automatic chord recognition. In: ICASSP, pp. 453–456. IEEE (2012)

    Google Scholar 

  20. Izmirli, Ö.: Cyclic-distance patterns among spectra of diatonic sets: the case of instrument sounds with major and minor scales. Tonal Theor. Digit. Age 15, 11–23 (2008)

    Google Scholar 

  21. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89(4), 334–368 (1982)

    Article  Google Scholar 

  22. Kruskal, J.B., Wish, M.: Multidimensional Scaling, vol. 11. Sage, California (1978)

    Book  Google Scholar 

  23. Lerdahl, F.: Tonal Pitch Space. Oxford University Press, Oxford (2001)

    Google Scholar 

  24. Müller, M., Ewert, S.: Chroma toolbox: MATLAB implementations for extracting variants of chroma-based audio features. In: Proceedings of the International Conference on Music Information Retrieval (ISMIR), Miami, USA (2011)

    Google Scholar 

  25. Purwins, H.: Profiles of pitch classes circularity of relative pitch and key-experiments, models, computational music analysis, and perspectives. Ph.D. thesis, Berlin University of Technology (2005)

    Google Scholar 

  26. Purwins, H., Blankertz, B., Obermayer, K.: Toroidal models in tonal theory and pitch-class analysis. Tonal Theor. Digit. Age 15, 73–98 (2008)

    Google Scholar 

  27. Quinn, I.: General equal-tempered harmony: parts 2 and 3. Perspect. New Music 45(1), 4–63 (2007)

    Google Scholar 

  28. Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 18(5), 401–409 (1969)

    Article  Google Scholar 

  29. Sethares, W.A., Budney, R.: Topology of musical data. J. Math. Music 8(1), 73–92 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shepard, R.N.: Geometrical approximations to the structure of musical pitch. Psychol. Rev. 89(4), 305 (1982)

    Article  Google Scholar 

  31. Toiviainen, P.: Visualization of tonal content in the symbolic and audio domains. Tonal Theor. Digit. Age 15, 73–98 (2008)

    Google Scholar 

  32. Tymoczko, D.: The geometry of musical chords. Science 313(5783), 72–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tymoczko, D.: Three conceptions of musical distance. In: Chew, E., Childs, A., Chuan, C.-H. (eds.) MCM 2009. CCIS, vol. 38, pp. 258–272. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  34. Tymoczko, D.: A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice. Oxford University Press, Oxford (2011)

    Google Scholar 

  35. Volk, A., Honingh, A.: Mathematical and computational approaches to music: challenges in an interdisciplinary enterprise. J. Math. Music 6(2), 73–81 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür İzmirli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

İzmirli, Ö. (2015). Constructing Geometrical Spaces from Acoustical Representations. In: Collins, T., Meredith, D., Volk, A. (eds) Mathematics and Computation in Music. MCM 2015. Lecture Notes in Computer Science(), vol 9110. Springer, Cham. https://doi.org/10.1007/978-3-319-20603-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20603-5_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20602-8

  • Online ISBN: 978-3-319-20603-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics