

Edinburgh Research Explorer

Modeling Musical Structure with Parametric Grammars

Citation for published version:
Giraud, M & Staworko, S 2015, Modeling Musical Structure with Parametric Grammars. in International
Conference on Mathematics and Computation in Music (MCM), June 2015.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International Conference on Mathematics and Computation in Music (MCM), June 2015

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Apr. 2024

https://www.research.ed.ac.uk/en/publications/47452595-679a-48c5-91cf-866ff7fbca66

Modeling Musical Structure
with Parametric Grammars

Mathieu Giraud1 and S lawek Staworko1,2,3

1 Algomus, CRIStAL (UMR CNRS 9189, Université de Lille)
2 LINKS, Inria Lille & CRIStAL (UMR CNRS 9189, Université de Lille)

3 Diachron project, LFCS, University of Edinburgh

Abstract. Finding high-level structure in scores is one of the main chal-
lenges in music information retrieval. Searching for a formalization en-
abling variety through fixed musical concepts, we use parametric gram-
mars, an extension of context-free grammars with predicates that take
parameters. Parameters are here small patterns of music that will be
used with different roles in the piece. We investigate their potential use
in defining and discovering the structure of a musical piece, taking ex-
ample on Bach inventions. A measure of conformance of a score with
a given parametric grammar based on the classical notion of edit dis-
tance is investigated. Initial analysis of computational properties of the
proposed formalism is carried out.

1 Introduction

Finding high-level structure in scores is one of the fundamental research chal-
lenges in music information retrieval. Listeners are capable of discerning struc-
ture in music through the identification of common parts and their relative
organization. Capturing musical structure with formal grammars is an old idea,
taking roots in linguistics [1, 12, 18–20]. A grammar consists of a collection of
productions, transforming non-terminal symbols into other symbols, and even-
tually producing terminal symbols that can be the actual notes or other elements
of the musical surface. Grammars can be used as a music analysis tool, to find
the right grammar modeling a piece, as well as a composition tool, to generate
pieces following a grammar. Typically, for a grammar to be used as a generating
tool, the productions are additionally labeled with probabilities [3].

The Shenkerian analysis [15] and the Lerdahl and Jackendoff Generative The-
ory of Tonal Music (GTTM) [9] share similar ideas with formal grammars. Some
studies tried to put these approaches into computational models [5, 10]. Other
authors use different kinds of formal languages and high-level descriptions to en-
code music [4,11]. Many of these formal approaches propose a derivation tree over
musical surface that can be understood as parse tree of a grammar. In this view
a parse tree identifies the structure of a musical piece while a grammar models
the structure of a set of related pieces that share the same structural footprint.
Indeed, there exists works that attempt to automatically infer a context-free
grammar from a piece [17].

All such approaches may suffer from a lack of generality: The precise signi-
fication of a non-terminal is often very dependent on the piece. But it should
be possible to develop more generic tools, where the concepts of chorus, verse,
theme, variation, and development exist independently of the underlying mu-
sic data. Several studies proposed techniques to infer or discover patterns used
in different roles, even with some variations [2, 8]. Further research should be
carried to propose formalisms able to encode notions on musical structure on
potentially different musical material, and to be able to assert the compliance of
these formalisms to the music. This paper proposes two steps in these directions:

– We use parametric grammars as an extension of context-free grammars where
non-terminals have parameters that take values in the set of terminals. Pa-
rameters are here small patterns of music that will be used with different
roles in the piece. Theses patterns are used both in measure-level or phrase-
level production rules (texture arising from the local organization of the
patterns) as well as in high-level organization of the piece into parts (each
part involving similar or different phrase-level organizations). The formaliza-
tion with parametric grammars enables us to model some musical concepts
as the notion of development which can take several short patterns as pa-
rameters, even if the actual order of patterns is not specified. We show how
to model Bach inventions with such grammars.

– We propose an algorithm to compute the optimal distance between a piece
and a parametric grammar while building a derivation tree of the piece.
Checking compliance between a musical piece and the model is the first step
to more elaborated tasks, for instance, find the right grammar, or learning
grammars from a set of examples. We show, however, that the fundamental
problem of constructing the optimal alignment is intractable. To alleviate the
negative impact of this result, we propose a number of practical restrictions
(bounded height, width and errors) that renders computation feasible.

We prove the adequacy of our approach to model the music structure and find
the optimal derivation on Bach inventions within a music analysis framework
that attempts to capture only certain aspects of the music. We do not model
everything. In fact, we do not work with single notes of the musical pieces but
instead work on a level of abstraction and represent the pieces with a small set
of repeated patterns. As such the generative aspect of this use of parametric
grammar may be limited. The analysis perspective allows us to focus on the
high-level structure. Moreover, as we try to have generic production rules in the
grammar, the matching between the derivation of our grammars and the actual
music is far from being exact. Nevertheless, we believe that this fuzziness reflects
some aspect of the music complexity, as a fragment from any music material may
have several different – and sometimes contrasting – roles.

The following Section presents the idea of the modeling on inventions by
J. S. Bach. Section 3 contains a formal definition of parametric grammars and
proposes a method for constructing an optimal alignment between a musical

!
" "

b

" "

"

"
c

#
a

"

"

"
" """

" "
"
e

"
b

"
c

#
a

"

a

"

"
""

"
"

"
"
" "

e

" "B

"
"A

"

c

""

" ""
"e

"
b

" "
""

"A

"
e

"
"
" "

B

"
e

" """
A

"
e

$
" "
"

"
"
"

%

&

'

#
a

()
*)

" "A

"
c

"
B

"
e

" "
"

" " "
c

"
a

"$
" "

"
"
"

" " "" "
"

"
b

"
B

"
s

" $"

Music engraving by LilyPond 2.19.16—www.lilypond.org

Fig. 1. Patterns used to model musical surface of Bach invention #01 in C major,
taken from the first four measures of the sopran voice. All patterns have a duration of a
quarter. The main patterns are a/A: four sixteenths in a upwards (a) or downwards (A)
movement; b/B: four sixteenths (two successive thirds) in a upwards (b) or downwards
(B) movement; c: two eights, large intervals; e: two eights, small intervals.

abce|abce|ABAB|ABAB|c?AB|BBzz||--ab|--ab|--AB|--AB|eece|cees| ...

--ab|--ab|eece|cees|abce|ec?z||abce|abce|ABec|ABec|ABAB|ABAB| ...

... |abAA|BbAz||ABss|abss|ABss|abss|abab|abcz|AB??|----||

... |c?AB|BBcz||--AB|ssab|ssAB|ssab|eece|ceAB|ceaz|----||

Fig. 2. Reduction of the whole invention using patterns of length of a quarter

piece and a parse tree that captures the structure in a musical piece. Section 4
comes back to the musical examples, presenting results of computing the parse
trees that represent the music structure.

2 Modeling Bach inventions with parametric grammars

2.1 Low-level paradigmatic analysis

Most Bach inventions can be decomposed into motivic patterns, which is very
convenient to test models on higher structural levels. We thus choose here to
reduce the score with a paradigmatic analysis, based on our analysis and inspired
by [13, 16]. Figure 1 shows the decomposition of the first four measures of both
voices of Bach invention #01 using several patterns of length of a quarter note.
The four main patterns (a, b, c, e) are taken from the first measure in the
soprano voice. Of course, there are some arbitrary choices in this analysis –
patterns could have been be longer, and many of these patterns are related. For
example, pattern B is the mirror of pattern b, and pattern e can be seen as a
condensed pattern B. Ultimately, most of these patterns are derived from the
base patterns a and b. Figure 2 shows the decomposition of all the piece: About
80% of quarters can been seen as occurrence of either a, b, c, or e, sometimes
with slight variations, including mirroring (A and B).

2.2 High-level structural analysis

We propose to roughly model the invention #01 with the following grammar G1,

G1

S0() → P (x, y, z, w) + P (x, y, z, w) + P (z, w, x, y)
P (x, y, z, w)→ T (x, y) +D(z, w) + I(w)
T (x, y) → (x/ + y/ + /x+ /y) ∗ 2

| (/x+ /y + x/ + y/) ∗ 2
D(x, y) → (x/ + y/) ∗ 4 | (/x+ /y) ∗ 4
I(x) → (x/) ∗ 3 | (/x) ∗ 3

The formalism – parametric grammars – is described in the next section.
The grammar ultimately generates a stream of terminals such as “x/ ” (pattern
given by parameter x at the sopran voice, and any pattern at the alt voice).
Here, we explain informally how this grammar allows to capture the structure
of the invention #01.

The piece S0 has three parts. Each part P is split in three sub-parts with
an increased perceived pulse. In the thematic sub-part T (x, y), two patterns x
and y are used during two consecutive quarters, then on again two consecutive
quarters but on the other voice. This pattern is repeated twice, giving a feel-
ing of a large repeat of period one measure. For example, the first two measures
(soprano: abce|abce / alt: --ab|--ab) are modeled with T (a, b). In the develop-
ment sub-part D(x, y), there is a voice where the patterns x and y are repetitively
used during two measures (such as ABAB|ABAB / eece|cees with D(A,B)). Here,
the individual halves of each measure become more pronounced. Finally, in the
intensification sub-part I(x), there is a voice where a pattern x is played three
times at every quarter note (such as BBB / eec with I(B)). This intensification
is concluded by a cadential element before the start of the following part.

What are the advantages of using parametric grammar over using the stan-
dard context-free grammars? The P1 part could be roughly defined by explicit
rules of the following standard context-free grammar, without parameters:

Gnon-parametric

S0 → P1 + P2 + P3

P1 → T1 +D1 + I1
T1 → (a/ + b/ + /a+ /b) ∗ 2
D1 → (a/ + b/) ∗ 4
I1 → (B/) ∗ 3
...

Similar modeling can be done for the others parts. The complete non-parame-
tric grammar resulting from this modeling is, however, less concise, does not
allow to capture the structural similarities in elements of the same function
(part, theme, development, intensification), and fails to identify the connections
among structural elements of the piece that are established by using the same
of pieces of musical material.

In the parametric grammar, the rule deriving TDI sub-parts from P (x, y, z, w)
links the different sub-parts of a part. The fact that the same or similar musical

material is used throughout the part contributes the unity of this part. For in-
stance, the pattern x for the D sub-part is reused in the I sub-part. Similarly,
at the top level S0, the different parts use the same material, but the last part,
P (z, w, x, y), uses the music material in a different order.

The parametric grammar G1 can be made more flexible and closer to actual
pieces by relaxing some production rules as in the following grammar G2:

G2

S0() → P (x, y, z, w) + P (x, y, z, w) + P (z, w, x, y)
P (x, y, {z, w})→ T (x, y) +D(z, w) + I(w) ≤ 2
P (x, y, {z, w})→ T (x, y) + I(w) ≤ 2
P (x, y, {z, w})→ T (x, y) +D(z, w) ≤ 2
T (x, y) → (x/ + y/ + /x+ /y) ∗ [1; 2]

| (/x+ /y + x/ + y/) ∗ [1; 2]
D(x, y) → (x/ + y/) ∗ [3; 4] | (/x+ /y) ∗ [3; 4]
I(x) → (x/) ∗ [3; 4] | (/x) ∗ [3; 4]

Now a P part can be composed from only TI or TD sub-parts instead of
all three TDI sub-parts. Moreover, the number of repeats in the individual T ,
D and I sub-parts is variable. To limit the combinatorial explosion, a limit has
been set to 2 for each P part. This bounds the “alignment distance” to the actual
musical content, also limiting the number of candidate P “fragments” inside the
score. Distance and fragments are formally defined in the next section.

Note also that the w pattern playing a specific role in the I rule may be any
of the two patterns of the D rule. This choice is here modeled by the set {z, w}
in the rules for P .

length complete piece part P1 part P2 part P3 part P4

#01 C major 88 S0 → P1P2P3 TDI TTDI TD
#03 D major 65 S0 → P1P2P3WP4C TI TI TI TI
#04 D minor 54 S0 → P1P2P3 TDD TDDD T
#13 A minor 104 S0 → P1P2RP3P4 TDI TDI TR TI

Table 1. Reference analysis derivation for some Bach inventions. These inventions
were manually modeled as successive parts (P) composed of thematic (T), and possibly
development (D) and intensification (I) sub-parts. Some structures also include special
transition (W , R) and coda (C) parts that will not be discussed here.

Table 1 details the structure of four Bach inventions that can be seen as
productions of this grammar. As flexibility is inherent to the proposed grammar
model, it can define a large number of different musical pieces and many, if not
most, are unlikely to satisfy any reasonable aesthetic requirements of good mu-
sic. Using parametric grammars for generative purposes would therefore require
adding constraints on the flow of the piece and then generating a piece that sat-
isfies them. This is, however, beyond the scope of this paper whose main focus is

to provide an analytic framework capable of exploring certain high-level aspects
of the musical structure.

3 Parametric grammars

In this section, we formally define parametric grammars and we present how
to align scores to parse trees of parametric grammars. A parametric grammar
is essentially an extension of context-free grammar whose non-terminals take
parameters. They can be viewed as a specialized attribute grammars [7]. They
have the same expressiveness as context-free grammars but can be significantly
more concise [6].

3.1 Definitions

Let Σ be a finite set of symbols and k > 0 the number of output voices. A
(k-voice) output atom is an vector of k symbols i.e., an element of Σk, and we
use ā, b̄, . . . to range over output atoms. For an output atom ā ∈ Σk by ai we
denote the symbol at the i-th voice of a i.e., ā = (a1, . . . , ak). A (k-voice) string
is a sequence of atoms i.e., an element of (Σk)∗, and we use w, v, . . . to range
over strings. By |w| we denote the length of the string w and by wi we denote
the i-th atom of w for i ∈ {1, . . . , |w|} i.e., w = (w1, . . . , w|w|).

A grammar signature is a tuple S = (Σ, k,X, V, arity), where Σ is a finite set
of symbols, k > 0 is the number of output voices, X is a finite set of parameters,
and V is a finite set of non-terminals together with the function arity : V → N
that assigns to every transition symbol the number of its parameters. We assume
a fixed grammar signature S and define a number of concepts over S. An output
term is a vector of k elements from Σ∪X. A intermediate term is N(τ1, . . . , τn),
where N ∈ V is a non-terminal of arity n = arity(N) and τi ∈ Σ ∪ X for
i ∈ {1, . . . , n}. A term is either an output term or a intermediate term. A term
is ground if it does not use any parameter. Note that a ground output term
is an output atom i.e., an element of Σk, and similarly, a sequence of ground
output atoms is a string i.e., an element of (Σk)∗. A substitution is a function
θ that maps parameters in X to symbols in Σ (this function may be partial).
The result of applying a substitution θ to t, in symbols θ(t), is obtained by
replacing every parameter x by the symbol θ(x) that θ assigns to x. Applying
substitution is extended to sequences of terms in the canonical fashion: we apply
the substitution to every element of the sequence. For example, on the grammar
G2, the output atoms are {a, b, c, e, A,B, ...}, the intermediate terms are P (...),
T (...), D(...) and I(...), and the parameters are {x, y, z, w}. The substitution
mapping T (x, y) to T (a, b) is {θ(x) = a, θ(y) = b}.

A parametric grammar is a tupleG = (S, S0, P), where S = (Σ, k,X, V, arity)
is its signature, S0 ∈ V is a distinguished starting non-terminal, and P is a set
of productions of the form t → s, where t is a term and s a sequence of terms.
A derivation tree of G is a tree T such that:

1. the leaves of T are labeled by ground output terms;

2. the non-leaf nodes are labeled by ground intermediate terms;

3. for every non-leaf node there exists a production t → s and a valuation
θ such that, the node is labeled by θ(t) and the consecutive labels of its
children give the sequence θ(s).

The foliage of a derivation tree T , denoted yield(T), is the sequence obtained by
taking the leaf labels in the standard left-to-right traversal of the tree. Note that
yield(T) ∈ (Σk)∗ since the leaves of a derivation tree can be labeled by ground
output terms only. A parse tree of w ∈ (Σk)∗ (w.r.t. G) is any derivation tree
T whose root node is labeled by an intermediate term S0(a1, . . . , ak) for some
ai ∈ Σ and yield(T) = w. The language of G, denoted L(G), is the set of all
strings w ∈ Σ∗ that have a parse tree (w.r.t. G).

The grammar G2 defined in the previous section further uses elements of
syntactic sugar, allowing to represent a parametric grammar in a compact way:

1. disjunction e.g., t→ s1 | s2 equivalent to two rules t→ s1 and t→ s2,

2. numerical repetition e.g., t → s ∗ [1; 2] equivalent to t → s|s + s (+ is
concatenation operator, omitted in the formal definition). Many repetitions
in music have between 2 and 4 occurrences.

3. grouped set of parameters on the left-hand side e.g., N(x1, {x2, x3}) → s
equivalent to N(x1, x2, x3)→ s and N(x1, x3, x2)→ s, as well on the right-
hand side e.g., t → N(x1, {x2, x3}) equivalent to t → N(x1, x2, x3) and
t → N(x1, x3, x2). Indeed, the same basic music material is often used in
differents parts with different roles. For example, in the grammar G2, the
secondary patterns {z, w} play different roles in the three P parts.

3.2 Aligning scores to parse trees

While a parametric grammar allows to define strings, hence scores, that exhibit
a very specific structure defined by the grammar, real-life musical pieces rarely
adhere to this structure. Consequently, we propose a method of aligning a given
string w, that represents the musical surface, to a parse tree T of another string
v ∈ L(G), that exhibits the structure defined by G. In particular, we do not
assume that w is recognized by G, which may be too strict, but instead we
introduce a measure of distance between w and T that we aim to minimize. This
measure captures two types of operations performed on the parse tree T and the
string v:

1. Basic string editing operations, which include inserting and deleting an atom
in v as well as renaming a symbol of a single voice. For example, the cost of
renaming one symbol can be equal to 1 and the cost of inserting and deleting
an atom can be equal to k, the number of voices. The cost can also be linked
to the actual musical content of the pattern.

2. Move operations that introduce gaps or overlaps between the outputs (fo-
liage) of two sibling nodes in the parse tree T . While gaps (overlaps) in T
can be captured with insertion (deletion resp.) operations in v, their cost
can be different. Setting this cost to something smaller than the length of
the gap will favour the move of these output blocks.

We now fix a k-voice parametric grammar G and a string w ∈ (Σk)∗ that
needs not belong to L(G). Let w = (w1, . . . , wn) and define the set of positions in
w as Pos(w) = {1, . . . , n+1} with n+1 denoting a virtual end-of-string position.
A fragment of w is pair F = (s, e) ∈ Pos(w)2 of positions of w such that s ≤ e
and start(F) = s is called its start of F and end(F) = e its end. The fragment
F represents a substring (wstart(F), wstart(F)+1, . . . , wend(F)−1) and we point out
that the end position of F is not included in the substring wF but intuitively it
is the position of w that immediately follows the last position of wF . A fragment
is empty if its start and end are the same. We define a number of relations on
pairs of fragments F and F ′ of w: 1) F ′ is included in F if start(F) ≤ start(F ′)
and end(F ′) ≤ end(F); 2) F and F ′ overlap if start(F) ≤ start(F ′) < end(F)
or start(F ′) ≤ start(F) < end(F ′); 3) F ′ follows F if start(F) ≤ start(F ′). Note
that if F ′ follows F , the fragments may overlap.

Now, let T be a derivation tree of some string v w.r.t. the grammar G and
let NT be the set of nodes of T . An alignment of w to T is an assignment A of
a fragment of w to every node of T that satisfies the following two conditions:

1. The fragment of the root node spans the whole string w i.e., A(rootT) =
(1, n+ 1), where rootT is the root node of T .

2. The fragment of any non-root node is included in the fragment of its parent
i.e., if n′ is a child of n, then A(n′) is included in A(n).

3. The fragment of any inner node follows the fragment of any of its preceding
siblings i.e., if n has children n1, . . . , nm, then A(nj) follows (and possibly
overlaps with) A(ni) for any i ∈ {1, . . . , j − 1}.

We denote by startA(n) = start(A(n)) and endA(n) = end(A(n)) the start and
the end of the fragment of the node n in the alignment A. We define the measure
of distance of an alignment A of the string w to a parse tree T recursively on the
structure of T . That is, we define a function costA that assigns the alignment
cost to every node of the parse tree T of some string v ∈ L(G). We start in
the leaf nodes of the parse tree, where we attempt to identify a position within
the assigned fragment of w, that is closest to the output atom of the leaf node,
and any possible editing operations that need to be performed on the string
v. For any leaf note n, the cost costA(n) has to take into account whether the
fragment A(n) is empty (deletion of material) or not (identity or substitution of
material). The latter case may involve distance comparing atoms, as for example
the standard Hamming distance equal to the number of renaming operations
necessary to obtain the atom ā from the atom b̄.

For an inner node n with m children n1, . . . , nm, the definition of the cost is
more involved. First of all, the cost of n must include the cost of all its children.

Additionally, it has to incorporate the possible overlaps and gaps between frag-
ments of any pair of two consecutive nodes. Note that the length of overlap/gap
for ni and ni+1 is equal to |endA(ni)− startA(ni+1)|. Also, the cost needs to in-
corporate the possible left margin between the fragment of the first child n1 and
the fragment of its parent n as well as the right margin between the fragment
of the last child nm and the fragment of its parent. Altogether, we obtain the
following formula:

costA(n) = (startA(n1)− startA(n)) + (endA(n)− endA(nm)) +

+
∑m−1

i=1 |endA(ni)− startA(ni+1)|+
∑m

i=1 costA(ni),

possibly with weights on the different cost contributions. Now, the alignment dis-
tance between a grammar G and a string w is the minimum cost of an alignment
of w to a parse tree of G (we assume that G has at least one parse tree):

dist(G,w) = min{costA(rootT) | A is an alignment of w to a parse tree T of G}.

Note that an alignment with the minimal cost needs not be unique just as there
is more than one way of transforming the string ab to ba with the standard
editing operations of deleting and inserting a character.

3.3 Computational challenge

For a given word w and a given parametric grammar G, we want to construct an
optimal alignment (which includes a parse tree) that minimizes the alignment
distance of w to G. The intractability of this problem follows from the high
complexity of a much simpler problem of membership: given G and w, check
whether w ∈ L(G):

Theorem 1. Membership for parametric grammars is NP-complete.

This can be proven with a reduction from a variant of SAT [14]. It is easy to
see that w ∈ L(G) if and only if dist(G,w) = 0. Therefore, even measuring
the alignment distance alone is intractable and the task becomes more complex
when the construction of an optimal alignment is required. Observe that a given
parametric grammar can be converted to an equivalent context-free grammar by
grounding the nonterminals i.e., substituting the parameters with all possible
values. This procedure may yield a context-free grammar of size exponential in
the number of occurrences of parameters. Consequently, the number of occur-
rences of parameters is one source of complexity and bounding it by a constant
renders the membership problem tractable.

3.4 Constructing optimal alignment

We now outline an algorithm that constructs optimal alignment for a given input
string w and a given parametric grammar G. The basic data structure we employ
is a link which represents a node of a parse tree of G aligned to a fragment of

the input w with a given cost. Consequently, a link shall constitute of an start
and end position, a cost value, a ground term, and if the term is intermediate,
also a set of pointers to other links which capture the structure of the parse tree.

During the computation we maintain a set of links which represent partially
constructed parse trees each with an optimal alignment to a fragment of the input
tree. Initially, this set contains only links with output terms that correspond to
aligning the leaves nodes to the output atoms while deleting a number of adjacent
atoms and links with output terms inserted at a specific positions of the input
string. Then, iteratively, we saturate the set of links with links with intermediate
terms that are obtained from applying production rules of G together with any
possible move operations. A collection of pointers to the links that triggered
using a production rule is stored in the newly created link, and its start, end,
and cost is calculated appropriately from the starts, ends, and costs of those
links. This process continues until no further link can be added and at this point
we search for a link with the smallest cost with start 0 and end |w| that is labeled
with the start nonterminal. The cost of this link is the cost an optimal alignment
that can be constructed by following the pointers to child links.

4 Computing alignment distances on Bach inventions

We computed the distance computation on a number of inventions using the
grammars described in Section 2. When constructing an optimal alignment, an
important computational factor is its distance from the input string (i.e., the
cost at the root node of the alignment tree). Essentially, the cost of finding an
alignment is exponential in its cost. To render the computation feasible we allow
the grammar to additionally specify:

– bounds on the length of the fragment derived from a given rule,
– and bounds on the overall cost of aligning any fragment to a given rule (such

as ≤ 2 in G2).

In our experiments we employ a slightly modified cost function that for moving
operations does not penalize gaps between elements but only overlaps.

Figure 3 details the derivation tree found for Bach invention #01 by taking
a simplified version of the grammar G2. The invention #01 is decomposed into
three parts (P), each one including full TDI sub-parts, even if the grammar
allows to skip some of these parts. The computed derivation succeeds thus in
finding this 3-part structure, with relevant patterns, even if the computed deriva-
tion is not always identical to the reference analysis. By further adjustments in
the grammar, it is possible to make the computed derivation even closer to the
reference analysis. However, that is not our goal, but rather we show that a
single generic grammar can be used to model several music pieces.

Finding a unique grammar that can parse several real pieces is quite difficult:
further research need to be conducted to find constraints that are musically
relevant while allowing more flexibility in the grammar. However, we show that
the same grammar applied on the first three parts of the invention #03 (Figure 4)
predicts almost correctly bounds to these parts and corresponding sub-parts.

Reference analysis

Optimal alignment

S0()[0;88]

S0()8[0;88]

P (a, b, A,B)[0;28]

P (a, b, A,B)0[0;28]

T (a, b)[0;8]

T (a, b)0[0;8]

a
0
-

b

-

c

a

e

b

|

|

a
4
-

b

-

c

a

e

b

|

|

D(A,B)[8;16]

D(A,B)0[8;16]

A
8
e

B

e

A

c

B

e

|

|

A
12
c

B

e

A

e

B

s

|

|

...
16
...

I(B)

I(B)0

[19; 22]

P (a, b, A,B)[24;56]

P (a, b, A,B)0[28;56]

T (a, b)
[24; 32]

T (a, b)0

[28; 32]

T (A,B)
[32; 40]

D(A,B)
[40; 48]

D(A,B)0

[40; 48]

I(B)
[48; 56]

I(B)0

[51; 54]

P (a, b, A,B)[56;88]

T (A,B)
[56; 60]

D(a, b)
[72; 78]

P (a, b, A,B)8[56;88]

T (A,B)0

[56; 60]

D(a, b)2

[68; 76]

I(b)2

[77; 80]

Fig. 3. Decomposition of Invention #01, in C major, with a simplified version of gram-
mar G2. Each node n is displayed together with, in subscript, the [startA(n); endA(n)]
values and, in superscript, the alignment distance costA(n).

5 Conclusions and Future Work

The proposed formalism of parametric grammars and derivations obtained with
optimal alignments offer an attractive way of modeling and identifying the music
structure. Our results indicate that our technique is adequate for describing some
elements of high-level features of the score.

It should be noted that we started with a paradigmatic analysis giving a
first abstract representation of the musical surface. Such an intermediate repre-
sentation, providing low-level semantics to the music, is here more appropriate
that working on a raw stream of notes. Naturally, this kind of patterns could
be inferred directly from the musical surface (notes, pitch), or the grammar
could produce individual notes. This, however, would add a layer of complexity
and its impact needs to be studied further. Also, a number of assumptions and
simplifications we have made in our work comes from our intent to use the para-
metric grammars as a descriptive rather generative model. Possible applications
of parametric grammars for music generation need to be explored further.

References

1. M. Chemillier. Informatique musicale, chapter Grammaires, automates et musique,
pages 195–230. Hermès, 2004.

2. Darrell Conklin. Distinctive patterns in the first movement of Brahms’ string
quartet in C minor. Journal of Mathematics and Music, 4(2):85–92, 2010.

3. David Cope. Virtual Music: Computer Synthesis of Musical Style. MIT Press,
2004.

Reference analysis

Optimal alignment

S0()[0;38]

P (a, b,�, a)[0;12]

T (a, b)[0;4] I(a)[4;12]

P (e, a,�, a)[12;24]

T (e, a)[12;20] I(a)[20;24]

P (e, a,�, ?)[24;36]

T (e, a)[24;32] I(?)[32;36]

S0()3[0;38]

P (>, a,�, a)0[0;12]

T (>, a)0[0;4] I(a)0[5;8]

P (�, a,�, a)2[12;26]

T (�, a)2[12;16] I(a)0[19;22]

P (�, a, e, a)1[26;38]

T (e, a)0[26;30] I(a)1[33;36]

Fig. 4. Decomposition of an extract of Invention #03, in D major.

4. Diana Deutsch and John Feroe. The internal representation of pitch sequences in
tonal music. Psychological Review, 88(6):503–522, 1981.

5. Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo. Implementing “a generating
theory of tonal music”. J. of New Music Research, 35(4):249–277, 2006.

6. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 2nd edition, 2001.

7. Donald E. Knuth. Semantics of context-free languages. Mathematical systems
theory, 2(2):127–145, 1968.

8. Olivier Lartillot. Taxonomic categorisation of motivic patterns. Musicae Scientiae,
13(1 suppl):25–46, 2009.

9. Fred Lerdahl and Ray S. Jackendoff. A Generative Theory of Tonal Music. MIT
Press, 1983, 1996.

10. Alan Marsden. Schenkerian analysis by computer. J. of New Music Research,
39(3):269–289, 2010.

11. David Meredith. A geometric language for representing structure in polyphonic
music. In Int. Society for Music Information Retrieval Conf. (ISMIR 2012), 2012.

12. Marcel Mesnage and André Riotte. Formalisme et modèles musicaux. 2006.
13. David Neumeyer. The two versions of J. S. Bach’s A-minor invention, BWV 784.

Indiana Theory Review, 4(2):69–99, 1981.
14. T. J. Schaefer. The complexity of satisfiability problems. In ACM Symposium on

Theory of Computing (STOC), pages 216–226, 1978.
15. Heinrich Schenker. Der freie Satz. Universal Edition, 1935.
16. Jennifer Shafer. The two-part and three-part inventions of Bach: A mathematical

analysis. Honors project, East Texas Baptist University, March 2010.
17. Kirill Sidorov, Andrew Jones, and David Marshall. Music analysis as a smallest

grammar problem. In ISMIR 2014, 2014.
18. Mark J. Steedman. A generative grammar for jazz chord sequences. Music Per-

ception, 2(1):52–77, 1984.
19. J. Sundberg and B. Lindblom. Generative theories in language and music descrip-

tions. Cognition, 4:99–122, 1976.
20. Terry Winograd. Linguistics and the computer analysis of tonal harmony. J. of

Music Theory, 12:2–49, 1948.

