
Structure Formation in Large Theories?

Serge Autexier and Dieter Hutter

German Research Center for Artificial Intelligence
Bibliothekstr. 1, 28359 Bremen, Germany
{serge.autexier|dieter.hutter}@dfki.de

Abstract. Structuring theories is one of the main approaches to re-
duce the combinatorial explosion associated with reasoning and explor-
ing large theories. In the past we developed the notion of development
graphs as a means to represent and maintain structured theories. In
this paper we present a methodology and a resulting implementation to
reveal the hidden structure of flat theories by transforming them into de-
tailed development graphs. We review our approach using plain TSTP-
representations of MIZAR articles obtaining more structured and also
more concise theories.

1 Introduction

It has been long recognized that the modularity of specifications is an indis-
pensable prerequisite for an efficient reasoning in complex domains. Algebraic
specification techniques provide appropriate frameworks for structuring complex
specifications and the authors introduced the notion of an development graph
[5,1,6] as a technical means to work with and reason about such structured
specifications. While its use presupposes the development of theories having the
intended structures already in mind, there are various applications of Formal
Methods in which theories are automatically generated in an entirely unstruc-
tured representation. Thus, there is a need for a computer-aided structure for-
mation for large theories, which allows for an efficient reasoning in such theories.

In this paper we present an initial approach to support structure formations
in large unstructured specifications. The idea is to provide a calculus and a corre-
sponding methodology to crystalize intrinsic structures hidden in a specification
and represent them explicitly in terms of development graphs. Step by step, the
specification is split into different nodes resulting in increasingly richer develop-
ment graphs. On the opposite, common concepts that are scattered in different
specifications are identified and unified in a common theory.

We start with a discussion on syntactical properties to measure the appropri-
ateness of a structuring and specify invariants underlying a structure formation
process. Based on this general framework we present a calculus (and heuristics
to guide this calculus) to transform development graphs in order to enrich the
explicitly given structure. We review our framework with the help of the Mizar
Mathematical Library (http://www.mizar.org/) providing hundreds of articles
which are subject to our structure formation process.

? The final publication is available at http://link.springer.com as part of the proceed-
ings of the Conference on Intelligent Computer Mathematics 2015.

ar
X

iv
:1

50
5.

01
62

0v
1

 [
cs

.L
O

]
 7

 M
ay

 2
01

5

http://www.mizar.org/
http://link.springer.com

2 Serge Autexier and Dieter Hutter

2 Development Graphs for Structure Formation

We base our framework on the notions of development graphs (and thus on the
notion of institutions [4]) to specify and reason about structured specifications.
Development graphs D are acyclic, directed graphs 〈N ,L〉, the nodes N denote
individual theories and the links L indicate theory inclusions with respect to
signature morphisms attached to the links. Each node N ∈ N of the graph is
a tuple (sigN , axN , lemN) such that sigN is called the local signature of N , axN

a set of local axioms of N , and lemN a set of local lemmas of N . L is a set of

global definition links M
σ +3 N. Each link imports the mapped theory of M

(by the signature morphism σ) as part of the theory of N . A node N is globally

reachable from a node M via a signature morphism σ, D `M _?
σ +3 N for short,

iff 1. either M = N and σ = id, or 2. M
σ′
+3 K ∈ L, and D ` K _? σ′′

+3 N ,
with σ = σ′′ ◦ σ′. The global signature (global axioms and global lemmata,
respectively) of a node N ∈ N is the union of its local signature (local axioms
and local lemmata) and the mapped global signatures of all nodes from which
N is globally reachable. A node is valid if all signature symbols occurring in its
global axioms and lemmata are declared in its global signature. A development
graph is well-defined, if all its nodes are valid.

The maximal nodes (root nodes) dDe of a graph D are all nodes without
outgoing links. DomD(N) := SigD(N) ∪ AxD(N) ∪ LemD(N) is the set of all
signature symbols, axioms and lemmata visible in a node N . The local domain
of N , domN := sigN ∪ axN ∪ lemN is the set of all local signature symbols,
axioms and lemmata of N . The imported domain ImportsD(N) of N in D is
the set of all signature symbols, axioms and lemmata imported via incoming
definition links. DomD =

⋃
N∈N DomD(N) is the set of all signature symbols,

axioms and lemmata occurring in D. Analogously we define SigD, AxD, and
LemD. DomdDe =

⋃
N∈dDeDomD(N) is the set of all signature symbols, axioms

and lemmata occurring in the maximal nodes of D.
Given a node N ∈ N its associated class ModD(N) of models (or N -models

for short) consists of those SigD(N)-models n for which (i) n satisfies the local

axioms axN , and (ii) for each K
σ +3 N ∈ S, n|σ is a K-model. In the following

we denote the class of Σ-models that fulfill the Σ-sentences Ψ by ModΣ(Ψ).
Given a signature Σ and Ax,Lem ⊆ Sen(Σ), a support mapping Supp for

Ax and Lem assigns each lemma ϕ ∈ Lem a subset H ⊆ Ax ∪ Lem such that
(i) Mod〈sym(H)∪sym(ϕ)〉Σ (H) |= ϕ 1 (ii) The relation @⊆ (Ax∪Lem)×Lem with
Φ @ ϕ ⇔ (Φ ∈ Supp(ϕ) ∨ ∃ψ.Φ ∈ Supp(ψ) ∧ ψ @ ϕ) is a well-founded strict
partial order. If D is a development graph, then a support mapping Supp is a
support mapping for D iff for all N ∈ D Supp is a support mapping for AxD(N)
and LemD(N).

We will now formalize the requirements on development graphs that reflect
our intuition of an appropriate structuring for formal specifications in the fol-
lowing principles.

1 where 〈S〉Σ denotes the smallest valid sub-signature of Σ containing S.

Structure Formation in Large Theories 3

The first principle is semantic appropriateness, saying that the structure of
the development graph should be a syntactical reflection of the relations be-
tween the various concepts in our specification. This means that different basic
specifications are located in different nodes of the graph and the links of the
graph reflect the logical relations between these specifications. The second prin-
ciple is closure saying, for instance, that deduced knowledge should be located
close to the axioms guaranteeing the proofs. Also the specification defined by
the theory of an individual node of a development graph should have a meaning
of its own and provide some source of deduced knowledge. The third principle
is minimality saying that each concept (or part of it) is only represented once
in the graph. When splitting a monolithic theory into different theories common
foundations for these theories should be (syntactically) shared between them by
being located at a unique node of the graph.

We now translate these principles into syntactical criteria on development
graphs and into procedures of how to transform or refactor development graphs.
In a first step we formalize technical requirements to enforce the minimality-
principle in terms of development graphs. Technically, we demand that each
signature symbol, each axiom and each lemma has a unique location in the
development graph. When we enrich a development graph with more structure
we forbid to have multiple copies of the same definition in different nodes. We
therefore require that we can identify for a given signature entry, axiom or lemma
a minimal theory in a development graph and that this minimal theory is unique.
We define:

Definition 1 (Providing Nodes). Let 〈N ,L〉 be a development graph. An

entity e is provided in N ∈ N iff e ∈ Dom〈N ,L〉(N) and ∀M σ +3 N. e 6∈
Dom〈N ,L〉(M). Furthermore,

1. e is locally provided in N iff additionally e ∈ domN holds.
2. e is provided by a link l : M

σ +3 N iff e is not locally provide in N and
∃e′ ∈ Dom〈N ,L〉(M). σ(e′) = e holds. In this case we say that l provides e
from e′. e is exclusively provided by l iff e is not provided by any other link
l′ ∈ L.

The closure-principle demands that there are no spurious nodes in the graph not
contributing anything new. We combine these requirements into the notion of
location mappings:

Definition 2 (Location Mappings). Let D = 〈N ,L〉 be a development graph.
A mapping locD : DomD → N is a location mapping for D iff
1. locD is surjective (closure)
2. ∀N ∈ N . ∀e ∈ domN . locD(e) = N
3. ∀e ∈ DomD. locD(e) is the only node providing e (minimality)

For a given locD we define loc−1D : N → 2DomD by
loc−1D (N) := {e ∈ DomD|locD(e) = N}.

We write loc and loc−1 instead of locD and loc−1D if D is clear from the context.

Based on the notion of location mappings we formalize our intuition of a
structuring. The idea is that the notion of being a structuring constitutes the

4 Serge Autexier and Dieter Hutter

invariant of the structure formation process and guarantees both, requirements
imposed by the minimality-principle as well as basic conditions on a development
graph to reflect a given formal specification.

Definition 3 (Structuring). Let D = 〈N ,L〉 be a valid development graph,
loc : DomD → N , Σ ∈ |Sign|, Ax,Lem ⊆ Sen(Σ) and Supp be a support
mapping for D. Then (D, loc,Supp) is a structuring of (Σ,Ax,Lem) iff
1. loc is a location mapping for D.
2. let DomdDe = Σ′ ∪Ax′ ∪ Lem′ then Σ = Σ′, Ax = Ax′ and Lem ⊆ Lem′.
3. ∀φ ∈ LemD . ∀ψ ∈ Supp(φ). ∃σ. loc(ψ) _?

σ +3 loc(φ) ∧ σ(ψ) = ψ

3 Refactoring Rules

In the following we present the transformation rules on development graphs that
transform a structuring again into a structuring. Using these rules we are able to
structure the initially trivial development graph consisting of exactly one node
that comprises all given concepts step by step. This initial development graph
consisting of exactly one node satisfies the condition of a structuring provided
that we have an appropriate support mapping at hand.

We define four types of structuring-invariant transformations: (i) horizontal
splitting and merging of development graph nodes, (ii) vertical splitting and
merging of development graph nodes, (iii) factorization and multiplication of
development graph nodes, and (iv) removal and insertion of specific links. Split-
ting and merging as well as factorization and multiplication are dual operations.
For lack of space and because we are mainly interested in rules increasing the
structure of a development graph we will omit the formal specification of the
merging and multiplication rules here.

Horizontal Split. The first refactoring rule aims at the separation of specifications
in independent theories. In terms of the development graph a node is replaced
by a series of independent nodes; each of them contains a distinct part from a
partitioning of the specification of the original node. In order to ensure a valid
new development graph, each of the new nodes imports the same theories as the
old node and contributes to the same theories as the old node did. To formalize
this rule we need constraints on how to split a specification in different chunks
such that local lemmata are always located in a node which provides also the
necessary axioms and lemmata to prove it.

Definition 4. Let S = (D, loc,Supp) be a structuring of (Σ,Ax,Lem) and N ∈
ND. A partitioning P for N is a set {N1, . . . , Nk} with k > 1 such that 1. sigN =
sigN1] . . .] sigNk , axN = axN1] . . .] axNk , lemN = lemN1] . . .] lemNk

2. sigNi∪axNi∪lemNi 6= ∅ for i = 1, . . . , k. A node Ni ∈ P is lemma independent
iff Supp(ψ) ∩ (axN ∪ lemN) ⊆ (axNi ∪ lemNi) for all ψ ∈ lemNi .

Definition 5 (Horizontal Split). Let S = (〈N ,L〉, loc,Supp) be a structuring
of (Σ,Ax,Lem), P = {N1, . . . , Nk} be a partitioning for some node N ∈ N such

Structure Formation in Large Theories 5

N

θ1
θ
n

. . .

σ 1
σ
m

. . .

N1 Nk

θ1 θnθ1 θn
. . .

σ1
|DomN1

σ
m
|DomN

1

σ 1
|Dom

N
k

σm|DomNk

. . .

. . .

Horizontal Split

Horizontal Merge

Fig. 1. Horizontal Split and Merge

that each Ni ∈ P is lemma independent and loc−1(N) = domN . The horizontal
split of S wrt. N and P is S ′ = (D′, loc′,Supp) with D′ = 〈N ′,L′〉 where

1. N ′ := {N1, . . . , Nk}] (N \N)

2. L′ := {M σ +3 M ′ ∈ L|M 6= N ∧M ′ 6= N}

∪ {M θ +3 Ni|M
θ +3 N ∈ L, i ∈ {1, . . . , k}}

∪ {Ni
τ|DomNi+3 M|N τ +3 M ∈ L, i ∈ {1, . . . , k}}

3. loc′(e) := Ni if e ∈ domNi for some i ∈ {1, . . . , k} and loc′(e) := loc(e)
otherwise.

such that SigD′(Ni) are valid signatures and axi, lemi ⊆ Sen(SigD′(Ni)) for
i = 1, . . . , k.

Vertical Split. Similar to a horizontal split we introduce a vertical split which
divides a node into two nodes and locates one node on top of the other. While
all outgoing links start at the top node, we are free to reallocate incoming links
to either node.

Definition 6 (Vertical Split). Let S = (〈N ,L〉, loc,Supp) be a structuring
of (Σ,Ax,Lem) and P = {N1, N2} be a partitioning for some N ∈ N such
that N1 is lemma independent. Then, the vertical split S wrt. N and P is S ′ =
(D′, loc′,Supp) with D′ = 〈N ′,L′〉 where

N ′ :={N1, N2}] (N \N)

L′ :={M σ +3 M ′ ∈ L|M 6= N ∧M ′ 6= N} ∪ {N1
id +3 N2}

∪ {M σ +3 N1 | M
σ +3 N ∈ L} ∪ {N2

σ +3 M | N σ +3 M ∈ L}

loc′(e) =

N2 if loc(e) = N and e ∈ DomD′(N2)
N1 if loc(e) = N and e 6∈ DomD′(N2)
loc(e) otherwise

such that SigD′(Ni), i = 1, 2, are valid signatures and axi, lemi ⊆ Sen(SigD′(Ni)),
i = 1, 2. Conversely, S is a vertical merge of N1 and N2 in S ′.

6 Serge Autexier and Dieter Hutter

N

M1 Mp

σ1 σl

. . .
ρ1 ρm

. . .

N2

N1

M1 Mp

ρ1 ρm
. . .

id

σ1
σl

. . .

Vertical Split

Vertical Merge

Fig. 2. Vertical Split and Merge

Example 1. We illustrate the horizontal and vertical split rules by considering a
single theory axiomatizing a Field with binary operations + and × consisting of
a Distributivity axiom (ΦD := ∀x, y, z.x×(y+z) = x×y+x×z) and the axioms
of an Abelian Group for + and ×, respectively (Φ+

AG := ∀x, y, z . x+(y+ z) =
(x+ y) + z,∀x, y . x+ y = y+x, ∀x . x+ 0 = x, ∀x . x+ -(x) = 0 and Φ×AG :=
∀x, y, z . x×(y× z) = (x× y)× z,∀x, y . x× y = y×x, ∀x . x× 1 = x, ∀x . x× inv(x) =
1). Assume axioms are contained in a single node Field, which forms a trivial
structuring. In a first step we can split that node vertically by separating the
distributivity axiom from the other axioms. In a second step we can separate
the Abelian Group axioms for + and × by a horizontal split. This is shown in
the following Figure:

ΦD
Φ+
AG

Φ×AG

(0) (1)
Vertical Split

(2)
Horizontal Split

ΦD

Φ+
AG, Φ

×
AG

id

ΦD

Φ+
AG Φ×AG

id id

Factorization. The factorization rule allows one to merge equivalent specifica-
tions into a single generalized specification and then to represent the individual
ones as instantiations of the generalized specification. A precondition of this rule
is that all individual specifications inherit the same (underlying) theories.

Definition 7 (Factorization). Let S = (〈N ,L〉, loc,Supp) be a structuring of
(Σ,Ax,Lem). Let K1, . . . ,Kn,M1, . . . ,Mp ∈ N with p > 1 such that sigMj ∪

axMj 6= ∅ and ∃σi,j . Ki

σi,j +3 Mj ∈ L for i = 1, . . . , n, j = 1, . . . , p.

Suppose there are sets sig, ax and lem with (sig∪ ax∪ lem)∩DomD = ∅ and
signature morphisms θ1, . . . , θp and σ1, . . . , σn such that
- ∀e ∈ DomD(Ki). θj(σi(e)) = σi,j(e) and σi,j(e) = e ∨ σi,j(e) 6∈ DomD

Structure Formation in Large Theories 7

M1 Mp. . .

K1 Kn

σ
1
,1 σ

n
,1σ 1

,p σ
n
,p

. . .

.

N

K1 Kn

N1 Np. . .
θ
1 θp

σ1
σ
n

. . .

.

Factorization

Fig. 3. Factorization (with σi,j := θj ◦ σi)

- sigMj ⊆ θj(sig) ⊆ DomD(Mj), axMj ⊆ θj(ax) ⊆ DomD(Mj)

- ∀e ∈ lem holds ∃l ∈ {1, . . . p}. θl(e) ∈ lemMl , θi(e) = θj(e) implies i = j and
θj(e) ∈ DomD implies loc(θj(e)) ∈Mj

- there is a support mapping SuppN for ax ∪
⋃
i=1,...,n σi(DomD(Ki)) and lem.

Then S ′ = (〈N ′,L′〉, loc′,Supp′) is a factorization of S wrt. M1, . . ., Mp and
SuppN iff

N ′ :={N} ∪ {Nj |j ∈ {1, . . . p}} ∪ N \ {M1, . . .Mp}
with N = 〈sig, ax, lem〉, Nj = 〈∅, ∅, lemMj \ θj(lem)〉

L′ :={K σ +3 K ′ ∈ L|K,K ′ 6∈ {M1, . . .Mp}

∪ {Ki
σi +3 N|Ki

σi,j +3 Mj, j ∈ {1, . . . p}, i ∈ {1, . . . n}}

∪ {N
θj +3 Nj|j ∈ {1, . . . p}}

∪ {K τ +3 Nj|K
τ +3 Mj ∧ (∀i ∈ {1, . . . n}.K 6= Ki ∧ τ 6= σi,j)

∪ {Nj
τ +3 K|Mj

τ +3 K ∈ L, j ∈ {1, . . . p}}

loc′(x) :=


N if x ∈ DomD′(N) \

⋃
i=1,...,n DomD′(Ki)

Nj if x ∈ DomD(Nj) and ∀K σ +3 Nj. x 6∈ DomD′(K)

loc(x) otherwise.

Supp′ :=Supp ∪ SuppN .

Example 2. Consider again our example a Field axioms, which we have trans-
formed into the structuring (3) (p. 6). On the last structuring (3) we can ap-
ply the factorization rule to extract the general abelian group axioms (Φ◦AG :=
∀x, y, z . x ◦(y ◦ z) = (x ◦ y) ◦ z,∀x, y . x ◦ y = y ◦x, ∀x . x ◦ e = x, ∀x . x ◦ i(x) = e)
and obtain the respective axioms for + and × by morphisms σ1 := ◦ 7→ +, e 7→
0, i 7→ − and σ2 := ◦ 7→ ×, e 7→ 1, i 7→ inv. This is illustrated in the following
diagram and the final structuring contains 5 axioms and the initial structuring
contained 9 axioms.

8 Serge Autexier and Dieter Hutter

ΦD

Φ+
AG Φ×AG

id id

ΦD

∅ ∅
id id

Φ◦AG

σ1 σ2

(3) (4)
Factorization

The factorization rule only covers a sufficient criterion demanding that each
theory imported by a definition link to one specification is also imported via
definition links by all other specifications. The more complex case in which a
theory is imported via a path of links can be handled by allowing one to shortcut
a path in a single global link. This results in the following rule.

Definition 8 (Transitive Enrichment). Let S = (〈N ,L〉, loc,Supp) be a

structuring of (Σ,Ax,Lem), K,N ∈ N and there is a path K _?
σ +3 N between

both. Then, S ′ = (〈N ,L ∪ {K σ +3 N}〉, loc,Supp) is a transitive enrichment
of D.

Definition links in a development graph can be redundant, if there are al-
ternatives paths which have the same morphisms or if they are not used in any
reachable node of the target. We formalize these notions as follows:

Definition 9 (Removable Link). Let S = (D, loc,Supp) (D = 〈N ,L〉) be a
structuring of (Σ,Ax,Lem). Let l ∈ L and D′ = 〈N ,L\{l}〉. l is removable from
S and S ′ = (D′, loc,Supp) is a reduction of S iff

1. ∀l′ : M
σ +3 N. if l′ provides exclusively σ(e) from some e ∈ DomD(M)

then e ∈ DomD′(N) and l 6= l′;

2. ∀e ∈ DomD.∀M ∈ dDe. if loc(e) _?
σ +3M then there exists M ′ ∈ dD′e such

that
loc(e) _?

σ +3M ′;
3. ∀φ ∈ LemD. Supp(φ) ⊆ DomD′(N) and ∀SiglocD (N) ⊆ DomD′(N).

Theorem 1 (Structuring Preservation). Let S := (D, loc,Supp) (D = 〈N ,L〉)
be a structuring of (Σ,Ax,Lem). Then

1. every horizontal split of S wrt. some N ∈ N and partitioning P of N ,
2. every vertical split of S wrt. some N ∈ N and partitioning P of N ,
3. every factorization of S wrt. nodes M1, . . .Mp ∈ N ,
4. every transitive enrichment of S, and
5. every reduction of S

is a structuring of (Σ,Ax,Lem).

The theorem follows from the soundness proofs for each rule given in Appendix 6.

Structure Formation in Large Theories 9

4 Refactoring Process

In order to evaluate the refactoring rules on real theories we have implemented
the development graphs and the rules in Scala2 and added support to read for-
mulas in TSTP format [9] using the Java parser from [8]. The support mapping
is given as an extra datastructure representing the information which formula
has been used in the proof of a theorem. In the case of TSTP we extract that
information from the files by using the names of the formulas. Since the TSTP
format does not include signature declarations, we add declarations for all oc-
curring symbols in a TSTP file in an initialization step. We used the untyped
part of TSTP and hence the declarations only contain arity information but no
types.

The refactoring rules are parameterized over the theories and possibly the
subsets of the local signature, axioms and lemmata to split over. To compute
the parametric information we provided some basic heuristic tactics. Using the
support mapping, we define that an axiom (resp. lemma) depends on a symbol
declaration, if the symbol occurs in the axiom (resp. lemma) and a lemma de-
pends on another axiom or lemma, if the latter is in its support mapping. A
symbol declaration is always independent. This dependency relation induces a
partial order on the local domain of each node in a development graph.

Tactic for horizontal split. This rule requires the partitioning of the local sig-
nature, axioms and lemmas for a given theory into independent parts such that
given the same imports than the original node, each part is a valid theory and
lemma independent of the other part. We implemented a heuristic that given a
local domain of some node, searches for a largest subset which has a non-empty
intersection of its occurring symbols and supporting axioms and lemmata. If
such a set exists, the largest such set is used to split the theory horizontally into
that set and the rest.

Tactics for vertical split. The rule requires to find a subset of the local domain,
which is independent of the rest and use it as the content of the lower theory.
We implemented two heuristics to search for this subset. First, we consider all
maximal elements wrt. the dependency relation and use that as content for the
new upper theory constructed by vertical split. Second, we consider all minimal
elements and use it as content for the lower theory constructed by vertical split.
These two tactics allow one to incrementally split a theory into layered slices of
the dependency relation.

Tactic for factorization. This rule requires to find isomorphic subsets in two
different theories to factorize over. The notion of isomorphism between formulas
is very strict, as we only search for renamings. Furthermore, we extended the
isomorphism to the support mapping such that lemmata can only be identified
with isomorphic lemmata which supporting axioms and lemmata are also iso-
morphic wrt. the same renaming. Thus, an axiom can never be factorized with a

2 http://www.scala-lang.org/

http://www.scala-lang.org/

10 Serge Autexier and Dieter Hutter

lemma and vice-versa. Even with that strict notion, computation of such subsets
is already expensive. If the entire local domain of a given node is isomorphic to
the local domain of the second node, both nodes are factorized according the
definition of the factorization rule. If the identified subset in the first node does
not cover the complete second node, we first try to split the second node to
isolate the subset. To this end we first try to split the second node horizontally
using the identified subset. If that fails, we first try to split vertically using the
subset for the upper part and finally as the lower part. If one of these splittings
was successful, the factorization is applied on the isolated part. Otherwise the
factorization fails.

In addition to these main tactics, we have implemented the tactics to delete
superfluous links as well as deletion of empty nodes which technically corresponds
to vertically merging the empty node with their importing theories.

Automatic Procedure. In order to automate the theory formation process we have
implemented the usual tacticals to describe more complex search behaviors. The
tactic language is defined as follows starting from the basic tactics described
above:

T ::= SplitHorizontal |SplitV erticallyMaximal |SplitV erticallyMinimal
| Factorize |RemoveSuperfluousEmptyTheories
| T ∗ |T + |T ;T |T onfail T

The tactics take as argument a structuring and if they could be applied,
return a new structuring and otherwise fail. The tacticals for as many as possible
iteration (∗), as many as possible but at least one (+) and sequencing (;) are
standard. The tactical onfail executes the second tactic expression only if the
first failed. Using this language we have implemented the following automatic
procedure. The goal of the procedure is starting from an unstructured graph,
i.e. a single theory containing all declarations, axioms and lemmata, to search
for possibilities to factorize common patterns. Factorization is only possible if
at least one application of the horizontal split rule was possible, which in turn
may require the application of a preparatory vertical split. Following that initial
part, we try to split further vertically using the maximal elements of the theory
and finally removing the superfluous links and empty theories. Hence, the initial
phase of the automation consists of

inittac ≡̇ ((SplitV erticallyMinimalEntries+;SplitHorizontally∗)
onfail SplitHorizontally+);
SplitV erticallyMaximalEntries∗;
RemoveSuperfluousEmptyTheories∗

That initialization tactic succeeds only if at least one vertical split or one hori-
zontal split could be done. Following that, we start to factorize. If at least one
factorization was possible, we first clean up the structuring by removing super-
fluous links and empty theories before trying again to split vertically. The overall

Structure Formation in Large Theories 11

Article Axioms Theorems Reduction Timeout
binop_2.top.rated 21 / 19 28 / 28 5% yes
bintree1.top.rated 62 / 61 16 / 16 2% no
cfuncdom.top.rated 25 / 24 40 / 40 2% no
ff_siec.top.rated 52 / 51 32 / 32 2% no
finsub_1.top.rated 38 / 37 16 / 16 2% no
heine.top.rated 96 / 95 13 / 13 1% no
membered.top.rated 17 / 17 36 / 16 38% no
mssubfam.top.rated 84 / 83 55 / 55 1% no
msualg_1.top.rated 49 / 48 13 / 13 2% no
power.top.rated 103 / 102 61 / 61 1% yes
qc_lang1.top.rated 86 / 85 23 / 23 1% no
rsspace.top.rated 46 / 45 20 / 20 2% no
setfam_1.top.rated 51 / 48 44 / 44 4% no

Fig. 4. Factorization results on TSTP versions of the Mizar articles

tactic is thus

inittac; (Factorize+;RemoveSuperfluousEmptyTheories∗;
SplitV erticallyMinimalEntries∗)∗

5 Evaluation

We have applied the factorization procedure presented in the previous section to
TSTP versions of the Mizar library articles www.mizar.org, which have been cre-
ated by Joseph Urban and are available at http://www.cs.miami.edu/~tptp/
MizarTPTP/TPTPArticles/. This is a collection of 922 files in TSTP format
(www.cs.miami.edu/~tptp/TSTP) where theorems are annotated by informa-
tion which theorems and axioms have been used in their proofs. The files consist
of the axioms and theorems of each article including all directly included articles,
but without transitive expansion of all inclusions. Hence, the knowledge in each
file is already quite tailored to the knowledge necessary to define the additional
mathematical concepts and to enable the proofs of the theorems. We have run
the procedure on all examples with a timeout of 5 minutes each. The environ-
ment was a virtual machine with 4 virtual CPUs, 16GB RAM, under openSuSE
12.2 64-bit, running on a host with 2 Intel Xeon Westmere E5620 QuadCore
CPUs, 2,4GHz, 96GB RAM and VMware ESXi 4.1.

For most articles no factorization has been found. However, there are 13
articles where factorization was possible, which are presented in the table Fig. 5.
The results are summarized in the following format: for each file we indicate
in the Axioms column the number of axioms in the initial development graph
and the final development graph. Analogously, the Theorems column indicates
the number of theorems respectively in the initial and the final development
graph. The Reduction column indicates how much the factorization reduced
the overall number of axioms and theorems. The last column indicates if the

www.mizar.org
http://www.cs.miami.edu/~tptp/MizarTPTP/TPTPArticles/
http://www.cs.miami.edu/~tptp/MizarTPTP/TPTPArticles/
www.cs.miami.edu/~tptp/TSTP

12 Serge Autexier and Dieter Hutter

10

11

4

6 8

1

2

7

9

3

5

Fig. 5. Resulting DG

automatic procedure had terminated within the 5
minutes time frame or timeout was reached.

While reducing the number of axioms by factor-
ization is already interesting in order to reduce the
search space for automatic provers, reducing the
number of theorems is more interesting as it means
less theorems to prove. For all but one file where
factorizations have been found, only axiom factor-
ization have been found. However, in the article
membered. top.rated obtained from the Mizar
article [10] “On the Sets Inhabited by Numbers”
we could factorize 36 theorems into 16 theorems.
On closer inspection this is not surprising because
it concerned theorems about sets of reals, sets of
rationals, sets of integers, sets of naturals and sets
of complex numbers, all defined and proved accord-
ing to the same schema. The resulting development
graph is shown on the right side of Fig. 5, and
the factor theory containing the 5 theorems, from
which all others are obtained by renaming, is node
9 in gray/orange. The factorization is visible via
the 5 outgoing edges towards node 11 which are annotated with the respective
morphisms.

6 Related Work and Conclusion

Related to the structuring of theories, there is a large work on anti-unification,
i.e. computing common generalizations of different formuala or theories (e.g.
[2,7,3]). The resulting structuring approach is primarily botton-up and driven
by the pure existence of anti-unifiers. In contrast, our approach is top-down as it
introduces measures for the intended structuring (i.e. semantic appropriateness,
closure and minimality) to guide the formation process. For example, we split
up theories in smaller ones but that are still self-contained in the sense that
each theorem of the original theory can be proven in one of the new (smaller)
ones. Anti-unification is an important technique to test the applicability of the
factorization rule, for instance, but applicability of a rule is not the driving force
of the formation process.

In this paper we were concerned with trying to reveal shared definitions,
axiomatizations and theorems in a given formal theory. Based on structurings
which extend development graphs with notions to exclude redundancies and
include dependency information, we presented a set of rules on structurings. We
implemented the rules with simple heuristics to detect isomorphic subsets which
are sufficient to find simple factorization and applied it to the TSTP formulations
of the Mizar articles. Not surprisingly, not many factorizations could be found,
which is due to Mizar’s non-transitive reuse principle of other articles and the fact

Structure Formation in Large Theories 13

that these were chosen carefully by the authors of the Mizar article. Moreover,
the heuristics to compute isomorphic axioms and theorems was very restricted.
However, a few factorizations could be found, and especially one were the number
of theorems could be halved. This indicates that adding theory morphisms to the
Mizar language may be useful, but that needs to be confirmed by further analysis
of larger subsets. On the other hand the non-transitive import mechanisms of
Mizar already seems to allow for a good organization of the knowledge. That
kind of mechanism is typically not implemented in specification languages, but
exists in development graphs in form of local axiom links.

Future work will consist of analyzing larger subsets of the whole Mizar li-
brary, i.e. sets of Mizar articles, for possible factorizations. We also plan to
apply it to libraries of other proof assistants assuming we can get the depen-
dency information which axioms/theorems have been used in which proof. Also
other automation tactics and especially heuristics to identify isomorphic formu-
las need to be explored, as well as heuristics to identify subsets for horizontal and
vertical splits. On a more theoretical level, we will investigate how axioms and
theorems could be identified, in order to allow to factorize alternative axiomati-
zations of the same theory without losing information, such as, e.g., alternative
forms to axiomatize groups. Finally, the whole system can be applied to any un-
typed first-order subset of TPTP theories to search for redundancies. However,
the resulting development graphs cannot be saved as TPTP theories, as it does
not support renaming. Hence, we propose to extend the TPTP language in that
respect.

References

1. S. Autexier and D. Hutter. Mind the gap - maintaining formal developments in
MAYA. In Festschrift in Honor of J.H. Siekmann. Springer, LNCS 2605, 2005.

2. A. M. Frisch and C. D. P. Jr. Generalization with taxonomic information. In 8th
National Conference on Artificial Intelligence, pages 775–761. AAAI-Press, 1990.

3. T. Gauthier and C. Kaliszyk. Matching concepts across HOL libraries. In Intelli-
gent Computer Mathematics, pages 267–281. Springer, LNAI 8543, 2014.

4. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39:95–146, 1992. Predecessor in: LNCS 164, 221–256, 1984.

5. D. Hutter. Management of change in verification systems. In Proceedings 15th
IEEE International Conference on Automated Software Engineering, ASE-2000,
pages 23–34. IEEE Computer Society, 2000.

6. T. Mossakowski, S. Autexier, and D. Hutter. Development graphs - proof manage-
ment for structured specifications. Journal of Logic and Algebraic Programming,
special issue on Algebraic Specification and Development Techniques, 67(1-2):114–
145, april 2006.

7. I. Normann and M. Kohlhase. Extended formula normalization for ε -retrieval
and sharing of mathematical knowledge. In Towards Mechanized Mathematical
Assistants (Calculemus/MKM). Springer, LNCS 4573, 2007.

8. A. Riazanov and A. Tchaltsev. Reusable tptp parser in java. http://www.

freewebs.com/andrei_ch/TPTP_2007.01.30.tgz, 2007.

http://www.freewebs.com/andrei_ch/TPTP_2007.01.30.tgz
http://www.freewebs.com/andrei_ch/TPTP_2007.01.30.tgz

14 Serge Autexier and Dieter Hutter

9. G. Sutcliffe. The TPTP World - Infrastructure for Automated Reasoning. In
E. Clarke and A. Voronkov, editors, Proceedings of the 16th International Confer-
ence on Logic for Programming Artificial Intelligence and Reasoning, number 6355
in LNAI, pages 1–12. Springer-Verlag, 2010.

10. A. Trybulec. On the sets inhabited by numbers. Journal of Formalized Mathemat-
ics, 15, 2003. http://mizar.uwb.edu.pl/JFM/Vol15/membered.html.

Proof of Theorem 1 (Structure Preservation)

Horizontal Split

It holds trivially that DomD = DomD′ .

– loc′ is surjective because by construction each Ni, i = 1, . . . , k has a local
entity. Furthermore, for each Ni and each e ∈ domNi holds loc′(e) = Ni by
construction. Furthermore, since loc−1(N) = domN , none of the incoming
links into N provided any entity, and consequently none of the incoming
links into N1, . . . , Nk do. Hence, loc′−1(Ni) = domNi , i = 1, 2 and since
domN := domN1] . . .] domNk , loc′(e) is unique for e ∈ domN .

– If N is not a top-level node in D, then DomdD′e = DomdDe = Σ]Ax]Lem
because the domains of nodes reachable from N are not affected by the
horizontal split. If N is a top-level node, then all Ni with 1 ≤ i ≤ k are
top-level nodes. Since domN = domN1] . . .] domNk and ImportsD(N) =
ImportsD′(N1) = . . . = ImportsD′(Nk), it holds

DomD(N) = domN ∪ ImportsD(N) = domN1 ∪ . . . domNk ∪ ImportsD(N)

= domN1 ∪ . . . domNk ∪ ImportsD′(N1) ∪ . . . ∪ ImportsD′(Nk)

= domN1 ∪ ImportsD′(N1) ∪ . . . ∪ domNk ∪ ImportsD′(Nk)

= DomD′(N1) ∪ . . . ∪DomD′(Nk)

Thus, DomdD′e = DomdDe = Σ]Ax] Lem.
– Assume φ ∈ LemD and ψ ∈ Supp(φ). If locD(ψ) 6= N and locD(φ) 6= N , then

both locD(ψ), locD(φ) are in D′ and we consider p : locD(ψ) _?
σ +3 locD(φ). If

N ∈ p then p := [p1, M
θ +3 N

τ +3 M ′, p2] and by construction the path

[p1, M
θ +3 Ni

τ|DomNi+3 M ′, p2] are in D′ for 1 ≤ i ≤ k. Since locD(ψ) 6= N ,
each τ|DomNi

behaves equivalently on the image of ψ imported in Ni and

hence locD′(ψ) _?
σ′
+3 locD′(φ) for some σ′ such that σ′(ψ) = σ(ψ). If N 6∈ p,

then p is also a path in D′ and locD′(ψ) _?
σ +3 locD′(φ) holds trivially.

If locD(φ) = N then since all Ni are mutually lemma independent, without
loss of generality we can assume φ ∈ axN1 ∪ lemN1 and this loc′D′(φ) = N1.
If locD(ψ) = N , then ψ′ ∈ axN1 ∪ lemN1 because N1 is lemma independent.

Thus, loc′D′(ψ) = N1 and loc′D′(ψ) = N1
_?
id +3 N1 = loc′D′(φ) holds trivially.

Otherwise, locD(ψ) = loc′D′(ψ) and since N was reachable from locD(ψ) by
construction N1 is also reachable from loc′D′(ψ).

http://mizar.uwb.edu.pl/JFM/Vol15/membered.html

Structure Formation in Large Theories 15

Vertical Split

– First, we have to prove that loc′ is a location mapping. loc′ is surjective
because by construction each node Ni (with i = 1, 2) has some local entity
e ∈ domNi . Thus loc′(e) = Ni and Ni is in the range of loc′. Furthermore,
∀e ∈ domNi . loc′(e) = Ni holds by definition. Finally, let e ∈ DomD′ =
DomD: loc′(e) = Ni implies loc(e) = N and therefore there is no node in

N \ {N} which provides e. Furthermore, since N1
id +3 N2 ∈ L′, N1 and

N2 cannot provide the same entity e.
– By definition ∀e ∈ domNi implies loc′(e) = Ni for i = 1, 2 in D′. For all

other nodes in D′ \{N1, N2} the property is inherited by (D, loc,Supp) being
a structuring and loc(e) = loc′(e) if loc(e) 6= N .

– Since DomD(N) = DomD′(N2) and N _?
σ +3M ∈ D iff N2

_?
σ +3M ∈ D′

DomdDe = DomdD′e.
– Suppose φ ∈ LemD, ψ ∈ Supp(φ) with loc(φ) = M and loc(ψ) = M ′. If N 6∈
{M,M ′} then loc′(φ) = M , loc′(ψ) = M ′ and M _?

σ +3M ′ in D′ trivially.

If M = N and M ′ 6= N then loc′(φ) ∈ {N1, N2}, and again Ni _?
σ +3M ′ in

D′. The case of M 6= N and M ′ = N is proven analogously. We are left with
the case of M = M ′ = N .
SinceN1 is independent ofN2 , it holds that for all φ′ ∈ axN1∪lemN1 . Supp(φ)∩
(axN2 ∪ lemN2) = ∅.
Thus φ ∈ axN1∪lemN1 implies that ψ ∈ axN1∪lemN1 as well andN1

_?
id +3 N1

holds trivially. ut

Factorization

– We have to prove that loc′ is a location mapping. First, we prove that loc′

is surjective. For any node K ∈ N ′ \ {N,N1, . . . Np} loc−1(K) = loc−1(K)
holds. Since sigN ∪ axN 6= ∅ but (sigN ∪ axN) ∩ DomD = ∅ it holds that
sigN ∪ axN ⊆ loc′−1(N). Furthermore, sigMj ∪ axMj ⊆ loc′−1(Nj) since
sigMj ∪ axMj ⊆ θj(sigN ∪ axN) and θj(sigN ∪ axN) ∩ (sigN ∪ axN) = ∅.
Second we have to prove ∀K ∈ N ′. ∀e ∈ domK . loc′(e) = K holds. If
K 6∈ {N,N1, . . . Np} then loc′(e) = loc(e) = K. If K = N then domN ∈
DomD′(N) and domN 6∈ DomD(Ki) for i = 1, . . . , n because domN ∩
DomD = ∅. Thus ∀e ∈ domN . loc′D′(e) = N . Finally, if K = Nj then

domNj = lemMj \ θj(lem) In particular, domNj ∩ DomD′(N) = ∅ implying

that loc′D′(e) = Nj for all e ∈ domNj .
Third, we prove that all e ∈ DomDG′ are provided by a unique node. The
only interesting case is that e is provided by N or some Nj . In case of N both

domN and also entries provided by some link from Ki are by definition not
in DomD and thus not provided by any node already in D but by definition
also not provided by Nj . It remains the case that an entry e is provided by
two nodes Ni and Nj . Since all e ∈ DomDG were provided by a unique node,
this implies that e has to be a mapped lemma of N but that violates the
precondition that each θi has to map e into a different entity.

16 Serge Autexier and Dieter Hutter

– Next we prove that D and D′ coincide in the entities they provide at their
maximal nodes. Since N is not a maximal node, it is sufficient to prove that
Nj and Mj coincide in their provided entities:

DomD′(Nj) = lemMj \ θj(lem) ∪
⋃
{σ(DomD′(K)) | K σ +3 Nj}

= lemMj \ θj(lem) ∪
⋃
{σ(DomD′(K)) | K σ +3 Nj,K 6= N}

∪ θj(sig) ∪ θj(ax) ∪ θj(lem) ∪
⋃
{σi,j(DomD(Ki,j))|i = 1...n}

= lemMj ∪ sigMj ∪ axMj

∪
⋃
{σ(DomD(K)) | K σ +3 Mj,K 6= Ki, σ 6= σi,j}

∪
⋃
{σi,j(DomD(Ki,j)) | i = 1...n} ∪ θj(lem)

= DomD(Mj) ∪ θj(lem).

– Suppose φ ∈ LemD′ and ψ ∈ SuppD′(φ). If loc′(φ), loc′(ψ) 6∈ {N,N1, . . . Np}
then loc′(φ) = loc(φ) and loc′(ψ) = loc(ψ) and therefore, ∃σ. loc(ψ) _?

σ +3 loc(φ)
with σ(ψ) = ψ in D. Since D′ inherits all links away from M1, . . .Mp and
paths travesing some Ki and Mj can be mapped to paths traversing Ki,

N , and Nj . ∃σ. loc′(ψ) _?
σ +3 loc′(φ) with σ(ψ) = ψ also in D′- Next, let

loc′(φ) = Nj : by definition we know that φ ∈Mj and Supp(φ) ⊆ DomD(Mj).
Since DomD(Mj) ⊆ DomD′(Nj) we know that Supp′(φ) = Supp(φ) ⊆
DomD′(Nj) and thus ∀ψ ∈ Supp′(φ). loc′(ψ) _?

σ +3 Nj with σ(ψ) = ψ. Fi-
nally, let loc′(φ) = N . Then SuppN ⊆ Supp′ is a support mapping for φ in
particular.

Transitive enrichment

Obviously, the inclusion of the global link does not affect the visibility (e.g.
Dom) of any node in N nor the local entities provided by the individual nodes
(i.e. dom). Hence, all properties of a structuring are trivially forwarded to the
enriched structuring.

Removable link

– We have to prove that loc is also a location mapping for D′. It holds that
∀N ∈ N . locD(N) = locD′(N) since dom(N) remains unchanged and also
all e ∈ locD(N) that are exclusively provided by some link in D are still
provided exclusively in D′. Thus, loc is also surjective in D′, also ∀N ∈
N .∀e ∈ domN . locD′(e) = locD(e) = N and ∀e ∈ DomD′ . locD′(e) is the
only node providing e.

– D′ and D′ coincide in the entities they provide at their maximal nodes, which
is an immediate consequence of condition (2) of Def. 9.

– Also ∀φ ∈ LemD′ . ∀ψ ∈ Supp(φ). ∃σ. loc(ψ) _?
σ +3 loc(φ) ∧ σ(ψ) = ψ is

implied by condition (3) of Def. 9.
ut

	Structure Formation in Large Theories

