Skip to main content

Math Literate Knowledge Management via Induced Material

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9150))

Included in the following conference series:

  • 1256 Accesses

Abstract

Mathematicians integrate acquired knowledge into a mental model. For trained mathematicians, the mental model seems to include not just the bare facts, but various induced forms of knowledge, and the amount of this and the ability to perform all reasoning and knowledge operations taking that into account can be seen as a measure of mathematical training and literacy. Current MKM systems only act on the bare facts given to them; we contend that they – their users actually – would profit from a good dose of mathematical literacy so that they can better complement the abilities of human mathematicians and thus enhance their productivity.

In this paper we discuss how we can model induced knowledge naturally in highly modular, theory-graph based, mathematical libraries and establish how to access it to make it available for applications, creating a form of mathematical literacy. We show two examples of math-literate MKM systems – searching for induced statements and accessing a knowledge via induced theories – to show the utility of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have left out the quantifiers for the variables x, y, and z from the axioms to reduce visual complexity. The always range over the respective base set. Furthermore, all axioms are named; but we only state the names we actually use in the examples.

  2. 2.

    In fact these theory identifiers are not adequate for explanations. We conjecture that verbalization of the primary symbol of the respective theory would be the right choice here – see [Koh14] for these concepts – but leave studying this to future work.

References

  1. Carette, J., Farmer, W.M., Kohlhase, M.: Realms: a structure for consolidating knowledge about mathematical theories. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 252–266. Springer, Heidelberg (2014). http://kwarc.info/kohlhase/submit/cicm14-realms.pdf

    Chapter  Google Scholar 

  2. Codescu, M., Horozal, F., Kohlhase, M., Mossakowski, T., Rabe, F.: Project abstract: logic atlas and integrator (LATIN). In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM/Calculemus 2011. LNCS, vol. 6824, pp. 289–291. Springer, Heidelberg (2011). https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf

    Chapter  Google Scholar 

  3. FlatSearch Demo. http://cds.omdoc.org:8181/search.html (Accessed on 23 April 2015)

  4. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. Assoc. Comput. Mach. 40(1), 143–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Iancu, M., et al.: The Mizar mathematical library in OMDoc: translation and applications. J. Autom. Reasoning 50(2), 191–202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Iancu, M., Rabe, F.: (Work-in-Progress) An MMT-based user- interface. In: Kaliszyk, C., Lüth, C. (eds.) Workshop on User Interfaces for Theorem Provers (2012)

    Google Scholar 

  7. Kohlhase, A., Kohlhase, M.: Spreadsheet interaction with frames: exploring a mathematical practice. In: Carette, J., Dixon, L., Coen, C.S., Watt, S.M. (eds.) Calculemus/MKM 2009. LNCS (LNAI), vol. 5625, pp. 341–356. Springer, Heidelberg (2009). http://kwarc.info/kohlhase/papers/mkm09-framing.pdf

    Chapter  Google Scholar 

  8. Kohlhase, M., Matican, B.A., Prodescu, C.-C.: MathWebSearch 0.5: scaling an open formula search engine. In: Campbell, J.A., Jeuring, J., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 342–357. Springer, Heidelberg (2012). http://kwarc.info/kohlhase/papers/aisc12-mws.pdf

    Chapter  Google Scholar 

  9. Kohlhase, M., Müller, C., Rabe, F.: Notations for living mathematical documents. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 504–519. Springer, Heidelberg (2008). http://omdoc.org/pubs/mkm08-notations.pdf

    Chapter  Google Scholar 

  10. Kohlhase, M.: The flexiformalist manifesto. In: Voronkov, A., et al. (eds.) 14th International Workshop on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2012), Timisoara, Romania, pp. 30–36. IEEE Press (2013).http://kwarc.info/kohlhase/papers/synasc13.pdf

  11. Kohlhase, M.: A data model and encoding for a semantic, multilingual terminology of mathematics. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 169–183. Springer, Heidelberg (2014). http://kwarc.info/kohlhase/papers/cicm14-smglom.pdf

    Chapter  Google Scholar 

  12. Rabe, F., Kohlhase, M., Sacerdoti Coen, C.: A foundational view on integration problems. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS (LNAI), vol. 6824, pp. 107–122. Springer, Heidelberg (2011). https://svn.eecs.jacobs-university.de/svn/eecs/archive/msc-2007/blaubner.pdf

    Chapter  Google Scholar 

  13. Laubner, B.: Using Theory Graphs to Map Mathematics: A Case Study and a Prototype. MA thesis. Bremen: Jacobs University, August 2007. https://svn.eecs.jacobs-university.de/svn/eecs/archive/msc-2007/blaubner.pdf

  14. The OAF Project & System. http://oaf.mathhub.info (Accessed on 23 April 2015)

  15. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima (2007)

    Google Scholar 

  16. Rabe, F.: The MMT system. https://svn.kwarc.info/repos/MMT/doc/html/index.html.2008

  17. Émilie Richter. Nicolas Bourbaki. http://planetmath.org/NicolasBourbaki.html

  18. Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54 (2013). http://kwarc.info/frabe/Research/mmt.pdf

    Article  MathSciNet  MATH  Google Scholar 

  19. Rabe, F., Schürmann, C.: A practical module system for LF. In: Cheney, J., Felty, A. (eds.) Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP), pp. 40–48. ACM Press, New York (2009)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the German Research Council (DFG) under grant KO 2428/13-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihnea Iancu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Iancu, M., Kohlhase, M. (2015). Math Literate Knowledge Management via Induced Material. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds) Intelligent Computer Mathematics. CICM 2015. Lecture Notes in Computer Science(), vol 9150. Springer, Cham. https://doi.org/10.1007/978-3-319-20615-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20615-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20614-1

  • Online ISBN: 978-3-319-20615-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics