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Abstract. The purpose of this project is to collect symbol information
in the Mizar Mathematical Library and manipulate it into practical and
organized documentation. Inspired by the MathWiki project and API ref-
erence systems for computer programs, we developed a documentation
generator focusing on symbols for the HTML-ized Mizar library. The
system has several helpful features, including a symbol list, incremental
search, and a referrer list. It targets those who use proof assistance sys-
tems, the volume of whose libraries has been rapidly increasing year by
year.
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1 Motivation

In mathematical knowledge management (MKM), expanding of the fields covered
by formal methods has led to the rapid growth of formal mathematical libraries.
For instance, the Mizar Mathematical Library (MML)[6,8,9] has grown to more
than 2.7 million lines in 2015, and it has been increasing by approximately 0.1
million lines per year.

The development of formal mathematical libraries facilitates the reuse of
mathematical symbols and theorems, thereby improving the efficiency of writing
formal proofs. However, the increased volume of the libraries makes it difficult
for users to grasp what and where symbols and theorems are defined. In recent
years, developers of formal proofs have spent considerable time on search tasks
in large-scale libraries, thereby decreasing the productivity of formal verification.
Therefore, searching and browsing efficiency in large-scale libraries has been a
crucial issue in MKM.

2 Survey and Design Decision

We analyze some existing tools for searching and browsing the Mizar library. The
HTML-ized Mizar library[1,15] is one of the most successful documentation tools

* The final publication is available at http://link.springer.com.


http://arxiv.org/abs/1505.01577v1

for formal mathematical libraries. The HTML-linked MML was first developed
in the late 1990s for the former ” Journal of Formalized Mathematics” 3 and then
re-implemented by Dr. Josef Urban using the XML /XSLT technology. This new
HTML-ization was also used in the MathWiki Project.* The system is capable
of intuitive and rapid browsing as a result of hyperlinks being embedded into
symbols, enabling users to jump from symbol occurrences to their definitions
by clicking them. The system has been widely used by Mizar users because
of its effectiveness and user-friendly design. However, because this system does
not have retrieval functions, users are frequently obliged to grep symbols in the
MML using text editors. Moreover, although the hyperlinks allow users to jump
to their definitions, it is still difficult to, inversely, enumerate the symbols that
include a particular symbol in their definitions.

MML Query|[4,5] is the most flexible and sophisticated search system for the
MML. This system has its own query language, and users can input more detailed
information regarding search objects than is possible using grep. However, users
must learn and master the query language, thus this is a burden for beginners.

Conversely, in software development, most widely used programming lan-
guages have several types of API documentation generators, and almost all of
the widely used libraries have their own online API documentation systems.
Those API reference systems have common features, such as incremental search
and a list of symbols that is automatically created by API documentation gener-
ators during library updates. Many documentation generators, such as Doxygen®
and RDoc%, have contributed to the acceleration of software development.

We apply the software development approach to developing a documentation
generator that works on the MML in order to overcome the drawback of existing
search and browsing systems.

3 Application

Using the programming language Python,” we developed a documentation gen-
erator® that comprises the following three steps:

1. Parse the HTML-ized MML and collect symbols and their mutual relation-
ships.

2. Clean and arrange those data.

3. Output reference documents in HTML format. Each file corresponds to one
symbol.

These steps take only a few minutes in total.”

3 http://mizar.org/JFM

4 http://www.ru.nl/foundations/research/projects/mathwiki/

5 http://www.doxygen.org/

5 https://github.com/rdoc/rdoc

" https://wuw.python.org/

8 https://github.com/aabaa/mmlfrontend
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The latest reference system produced by the generator is available at a web-
site.19 Fig. 1 shows a screenshot of the system.
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Fig. 1. Screenshot of the reference system.

The reference system offers the following helpful features:

Symbol List: There are nearly 9,000 symbols (predicate, mode, structure,
functor, and attribute) in the MML, all of which are listed in the left pane of
the system. The type of each symbol can be distinguished by the icon next to
the symbol. Clicking a symbol in the list causes the corresponding page to be
loaded into the main frame in left pane.

Incremental Search: An incremental search function is located at the top
of the left pane. When several search words separated by blanks are input, the
system combines the symbol list into symbols that contain all of the indicated
words. As the system has an original search table, the function returns search
results immediately. Users can quickly look up symbols defined in the MML,
even without knowing the correct spelling.

Source Code: The symbol definition source code is imported from the
HTML-ized MML. Symbols in bold font are hyperlinked to their definitions.
Internal links pointing to their definitions in this reference system are in blue.
External links pointing to their definitions in the original HTML-ized MML are
in red.

Referrer List: Although the HTML-ized MML enables users to jump from
symbol occurrences to their definitions by clicking them, it does not have a
function to enumerate symbols that are used in the definitions of particular
symbols. The new system organizes the list of referrers for each symbol, and
users can check them easily.

10 http://webmizar.cs.shinshu-u.ac.jp/mmlfe/current/



4 Conclusion and Future Work

We utilized the API documentation technique from the field of software develop-
ment to develop a new documentation generator that works on the MML. This
system enables users to retrieve symbols quickly and intuitively using an incre-
mental search function. Furthermore, users can easily check the types of symbols
allowed to be used together by referrer lists. These functions have contributed
considerably to improving the efficiency of formal proof development, and the
system has gained a good reputation among the Mizar community. Additionally,
the approach of the system is not specific to Mizar and the MML, thus all formal
libraries would benefit from such a system. Therefore, the future versions of the
system should support other formal languages and libraries.

We mention three remaining issues regarding the system:

Reimplementation with the XML-ized MMUL: The current documenta-
tion generator parses the HTML-ized MML instead of the XML-ized Mizar[12].
This is because the former represents relationships between symbols and their
definitions as embedded hyperlinks, whereas it is difficult to collect these rela-
tionships from the latter. However, the extra process required to generate the
HTML-ized MML takes considerable time. Therefore, we would like to change
the system to work with the XML-ized MML in the future.

Theorem Search: A theorem search system requires semantic analysis, and
machine learning would be a promising approach. Because this research is un-
derway for automated reasoning[3,14], we would like to apply the technique to
an interactive search engine.

Tagged Comments: In software development, most documentation gen-
erators collect tagged comments, such as authors, purposes, and usages, and
reflect them in API documents, whereas the current Mizar library does not have
any tagged comments. Although Mizar is a comparatively readable formal lan-
guage, it is sometimes difficult to discern a writer’s intention from a source code.
Consequently, such a function would work beneficially, if it were implemented.
Furthermore, there is no standard for tagged comments in formal libraries, such
a format should be developed in future work and then adopted by all formal
libraries.

We also suggest a possible application of the system:

Code Completion: Other major proof assistants have developed graphical
interfaces, such as the jEdit plugins for Coq and Isabelle [10,17,18]. Although
the Mizar system provides an Emacs plugin[13], some users hope that a newer
one will be offered on a modern integrated development environment (IDE).
The incremental function of the system would assist in implementation of code
completion for those IDE systems.
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