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Abstract. A virtual reality driving system was designed to improve driving skills
in individuals with autism spectrum disorder (ASD). An appropriate level of
cognitive load during training can help improve a participant’s long-term
performance. This paper studied cognitive load measurement with multimodal
information fusion techniques. Features were extracted from peripheral physio‐
logical signals, Electroencephalogram (EEG) signals, eye gaze information and
participants’ performance data. Multiple classification methods and features from
different modalities were used to evaluate participant’s cognitive load. We veri‐
fied classifications’ result with perceived tasks’ difficulty level, which induced
different cognitive load. We fused multimodal information in three levels: feature
level, decision level and hybrid level. The best accuracy for cognitive load meas‐
urement was 84.66 %, which was achieved with the hybrid level fusion.

Keywords: Autism · Virtual reality · Multimodal fusion · Cognitive load
measurement

1 Introduction

Autism spectrum disorder (ASD) is a common disorder that impacts 1 in 68 children in
the US [1]. Although at present there is no single accepted intervention, treatment, or
known cure for ASD, there is a growing consensus that appropriately targeted individ‐
ualized behavioral and educational intervention programs have the potential to posi‐
tively impact the lives of individuals with ASD and their families [2, 3]. However the
availability of trained autism clinicians is limited and the cost associated with traditional
therapies is enormous. As a result, the development of economical and effective assistive
therapeutic tools for autism intervention is urgent.
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A growing number of studies have investigated the application of technology,
specifically computer and virtual reality (VR) systems, to autism intervention. There are
numerous reasons why incorporating VR technology into intervention may be particu‐
larly relevant for children and adolescents with ASD. The VR-based intervention plat‐
form is characterized by malleability, controllability, modifiable sensor stimulation,
individualized approach, safety, and the potential to reduce problematic aspects of
complex adaptive life skills [4]. These systems could not only help children with ASD
generalizing learned skills to the real world, but also provide more control over how the
basic skills are taught.

At present, most VR-based platforms have been designed to improve social skill
deficits in ASD population [5, 6]. However, other activities of daily life that are important
for functional independence for individuals with ASD have not received similar atten‐
tion. In this work, we focus on VR-based driving since independent driving is often seen
as a proxy measure for functional independence and quality of life for adults across a
variety of disability and non-disability groups. It is noted that many individuals with
ASD fail to obtain driving independence [7]. In addition, an emerging literature suggests
that individuals with ASD display processing differences in driving environments that
may be linked to unsafe driving behaviors. Despite its importance, to our knowledge,
only two studies have investigated driving interventions for teenagers with ASD [8, 9].

Previous work has investigated the use of technological interventions for driving
skills in people with ASD, but no studies have developed a closed-loop individual‐
ized system to the best of our knowledge. Reimer and colleagues (2013) and Classen
and colleagues (2013) presented participants with a set of driving scenarios using a
driving simulator paradigm within a real vehicle that was converted into a simula‐
tion tool [8, 9]. Classen and colleagues found a higher error in driving performance
for teens with ASD or Attention Deficit-Hyperactivity Disorder (ADHD) compared
with typically developing (TD) group [9]. Reimer and colleagues found different
gaze patterns and physiological signals, such as heart rate and skin conductance
level (SCL), between the TD control group and individuals with autism [8]. They
also found the variation of heart rate in TD group under different cognitive condi‐
tion. These related research work highlighted the need for deeper research in indi‐
vidualized driving system for autism intervention.

We plan to develop an individualized intervention system that can maximize a
participant’s long-term performance by adapting the difficulty level of a driving task.
Task difficulty directly affects a participant’s cognitive load [10]. A lot of studies modu‐
lated cognitive loads using different task difficulties [11, 12]. An appropriate cognitive
load could maximize individual’s long-term performance [13]. An individualized
system, which can measure the user’s current cognitive load and modulate the cognitive
load to its optimal level by adjusting the task difficulty, has the ability to effectively
improve the user’s performance.

This paper measured cognitive load from multimodal signals, including performance
data and three classes of psycho-physiological signals: peripheral physiological signals
(heart rate, SCL etc.), EEG signals, and eye gaze signals. Performance-based measure was
traditional way for cognitive load measurement [14]. Performance features, including
reaction time, accuracy and error rate, indicated a participant’s cognitive load [11].
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Psycho-physiological measurement have been shown to provide real time information
about cognitive load [15–17], which in turn can be used to our individualized difficulty
level adjustment. For example, eye gaze offers rich physiological information, such as blink
rate and pupil diameter, to reflect a user’s cognitive state [18, 19]. EEG are sensitive and
reliable data for memory load measurement [20, 21]. Peripheral physiological signals, such
as electrocardiogram (ECG), photoplethysmogram (PPG), electromyogram (EMG), respi‐
ration (Resp.) and skin temperature (SKT), can reflect the variation of cognitive load [22,
23] as well as affective states [24, 25].

Integrating such psycho-physiological signals with performance data has the poten‐
tial to increase the robustness and accuracy for cognitive load measurement [26]. Son
and colleagues integrated performance with physiological data to estimate a driver’s
cognitive workload and got the best result with selected performance features and phys‐
iological features [27]. Koenig and colleagues have quantified the cognitive load of
stroke patients with both psycho-physiological and performance data and applied in a
closed-loop system [12]. Although other work has studied applications of cognitive load
in individualized intelligent systems with multimodal information fusion techniques,
this has not yet been done for individuals with ASD to the best of our knowledge.

The multimodal information fusion techniques could be presented in three levels:
feature level, decision level and hybrid level [28]. The feature level fusion was an easily
accomplished approach because it required only one learning phase on the combined
feature vector [29]. However, the synchronization from multimodal information was found
to be more challenging [30]. Decision level fusion combined the sub-decisions of each
modality to arrive at a more robust decision [31]. However, it was not good at reflecting the
correlation between features of different modalities [32]. Hybrid level fusion methods seek
to combine the advantages of feature level fusion and decision level fusion [28].

In our previous work [33, 34], we presented a novel VR driving environment with
the ultimate aim of developing an intervention platform capable of enhanced teaching
of driving skills to teenagers with ASD. In this paper, we present our current work in
fusing multimodal information to assess one’s cognitive load during driving. We eval‐
uated multiple classification methods for multimodal fusion and compared three levels
of fusion in this paper. The long term goal is to close the loop in such a way that the
driving task can be autonomously adapted to one’s cognitive load to optimize perform‐
ance, which is beyond the scope of this current paper.

2 Methods

2.1 Experimental Setup

The virtual driving system was designed with three components: a driving simulator, a
data acquisition module and a therapist rating module, shown in Fig. 1. Participants used
the driving simulator to engage in driving tasks. The data acquisition module acquired
their psycho-physiological information and performance data in real time. One therapist
observed and rated participants’ emotional state and cognitive state from another room.
All the data collected were synchronized by time stamped events from the driving simu‐
lator via a local area network (LAN).
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Fig. 1. The framework of the VR-based driving system

The driving simulator was composed of a virtual environment and a Logitech G27
steering wheel controller, shown in Fig. 2. The models in the virtual environment (e.g.,
the city, the car, and pedestrians) were realized with the modeling tools ESRI CityEngine
(www.esri.com/cityengine) and Autodesk Maya (www.autodesk.com/maya). The game
engine Unity3D (www.unity3d.com) was used to manipulate the logic of the system.
The system was composed of six different levels of difficulty to invoke different cogni‐
tive loads. Each level included three driving assignments. Each assignment included a
series of eight driving tasks in order to train the specified driving behaviors, such as
stopping properly at a stop sign, yielding to pedestrians, merging lanes, and turning left.

Fig. 2. The driving simulator and environment

Participants controlled a vehicle in the virtual environment using the controller. Their
driving behaviors and task performance were logged within the system. In addition to
recording performance data, the data acquisition system recorded psycho-physiological
data with psycho-physiological sensors shown in Fig. 3. A Tobii X120 remote eye
tracker (www.tobii.com/) was used to track the participant’s eye gaze. Biopac MP150
(www.biopac.com) sensors recorded ECG, EMG, Resp., SKT, PPG, and galvanic skin
response (GSR)signals wirelessly [35, 36]. The GSR and PPG sensors were attached on

712 L. Zhang et al.

http://www.esri.com/cityengine
http://www.autodesk.com/maya
http://www.unity3d.com
http://www.tobii.com/
http://www.biopac.com


the participant’s toes instead of fingers to reduce the motion artifact from driving [37].
An Emotiv EEG headset (www.emotiv.com) recorded 14 channels of EEG signals.

Fig. 3. The psycho-physiological sensors [37]

In the therapist rating module, a therapist observed and rated the participant’s affec‐
tive state and the apparent difficulty of the assignment using a 0-9 Likert scale. The
rating categories included difficulty level, engagement, enjoyment, boredom, and frus‐
tration. The module electronically recorded the rating in two ways: (1) the observer
continuously rating affect and difficulty level during assignments, and (2) the observer
providing an overall rating as a summary at the end of each assignment.

A total of 10 teenagers with ASD, with ages from 13 to 17 years, were involved in
the experiment. We recruited teenagers with ASD through an existing university clinical
research registry. The participants had a clinical diagnosis of ASD with scores at or
above clinical cutoff on the Autism Diagnostic Observation Schedule [38]. Their cogni‐
tive functioning was measured using either the Differential Ability Scales [39] or the
Wechsler Intelligence Scale for Children [40].

Each participant completed six visits on different days. The duration of each visit
was approximately one hour including device setup, baseline measurement, driving
practice, and the main task completion. As part of each visit, three researchers organized
the sensors and carried out eye tracker calibration. After a three-minute period used for
recording baseline physiological and EEG data, participants practiced driving for three
minutes in a free-form practice mode. Finally, participants completed three driving
assignments, which were unique except for the first and the last visit.

2.2 Feature Extraction

Eye Gaze Features. Eye gaze data was tracked by the eye tracker with a frequency of
120 Hz. The eye tracker had an average accuracy of 1 cm for gaze position tracking
when the participants sat approximately 70 cm away from the monitor. In addition to
gaze position, the eye tracker also measured the pupil diameter and blink.

The eye gaze data was preprocessed by reducing the noise with the median value
method [41]. The blink rate and pupil diameter were calculated from the preprocessed
eye tracker data. For the blink rate, the closure duration used a range from 75 to 400 ms
[42]. The eye gaze features included mean and standard deviation of blink rate, pupil
diameter, and fixation duration.
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Physiological Features. The physiological signals were recorded with a 1000 Hz
sample rate. The physiological features were preprocessed as shown in Fig. 4. First, we
removed the outliers of physiological signals. Then, we removed signal noise with
different high/low pass filters and notch filters [35, 36].

Remove outlier Preprocess Extract features

Fig. 4. Physiological signal analysis process

Sixty physiological features were calculated including sympathetic power, para‐
sympathetic power, very low-frequency power and ratio of powers of ECG, Mean Inter‐
beat Interval of ECG, mean and standard deviation of the amplitude and peak values of
PPG. The details of the physiological features can be found in [37].

EEG Features. The Emotiv EEG headset recorded signals from 14 channels from posi‐
tions AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4, defined by the
10-20 system of electrode placement [43]. There were two additional reference elec‐
trodes at locations P3 and P4. The bandwidth of the EEG headset was from 0.2 Hz to
45 Hz and the recorded sampling rate was 128 Hz.

After removing outliers, EEG signals were first filtered between 0.2 Hz and 45 Hz.
We then removed eye blink, eye movement, and muscle movement artifacts by applying
EOG-EMG artifact correction algorithm provided by EEGLab [44]. After this prepro‐
cessing, spectral features - averaged power of each channel on alpha (8-13 Hz), beta
(13-30 Hz), and gamma (30-45 Hz) bands-were then extracted from the clean signals
[20]. A total of forty-two EEG features were extracted.

Performance Features. Performance features were extracted from the driving behavior
data and task performance data. Performance features included the number of failure
during one assignment, the score achieved during one assignment, the levels of accel‐
erating acceleration and braking, and the average speed.

2.3 Data Fusion Methods

In order to evaluate cognitive load, features from different modalities were input into
classifiers The classifiers in Matlab (http://www.mathworks.com/) and Machine
Learning Toolbox (MLT) (http://mirlab.org/jang/matlab/toolbox/machineLearning/)
were used, including Support Vector Machine (SVM), Naïve Bayes (NB), Gaussian
Mixture Models (GMM), K-Nearest Neighbors with (KNN), Quadratic Classifier
(QCL), Decision Tree (DT), and Linear Classifier (LCL).

The therapist’s overall rating of difficulty level was used as the ground truth for
cognitive load classification methods. The 0-9 Likert scaled difficulty level rating was
grouped and relabeled as low (difficulty level less than five) and high (difficulty level
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larger than five) to reflect a binary-level cognitive load. In brief, we hypothesized based
on prior published research [12] that a participant in a high difficulty level task had high
cognitive load; while a participant in a low difficulty level task had low cognitive load.

Three level fusion approaches were implemented to fuse multimodal information:
feature fusion, decision fusion and hybrid fusion. Figure 5 (a) showed the feature level
fusion. All features were input into the preprocess module, which normalized features
and reduced their dimension with principal component analysis. The cognitive load was
evaluated with the preprocessed features.

Preprocess Classifier Cognitive load

Physiological features

EEG features

Eye gaze features

Performance features

(a)

PreprocessPhysiological features

EEG features

Eye gaze features

Performance features

Preprocess

Preprocess

Preprocess

Classifier 1

Classifier 2

Classifier 3

Classifier 4

Fusion Cognitive load

(b)

Feature fusion
EEG features

Eye gaze features

PreprocessPhysiological features

Eye gaze features Preprocess

Classifier 1

Classifier 2

Fusion Cognitive load

Sub-Decision

(c)

Fig. 5. (a) Feature fusion framework; (b) decision fusion framework; and (c) hybrid fusion
framework.
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Figure 5 (b) showed decision level fusion. We preprocessed the features from each
modality separately and then input them into different classifiers. Each classifier output
a cognitive load as a sub-decision. The fusion part summed all sub-decisions
( ) with weights for the final cognitive load (Dfinal) as shown in Eq. (1).

(1)

Figure 5 (c) gave one example of hybrid level fusion. Hybrid level fusion combined
the feature level fusion and decision level fusion. Features from more than one modality
(EEG and eye gaze) were preprocessed to make one sub-decision; while other modalities
features (physiological and performance) were preprocessed separately to assess other
sub-decisions. The final decision summed all sub-decisions with weights.

3 Results

Each assignment yielded one data sample. A total of 180 data samples were extracted
from ten participants. However, thirty-nine data samples were unusable due to factors
largely unrelated to the task, such as participants’ eye gaze moving out of eye tracker
detection range, some electrodes of the EEG sensor were displaced during their experi‐
ments, or one instance of the Biopac physiological sensors stopped working.

3.1 The Feature Level Fusion Results

The accuracies of different classifiers with features from each modality as well as all the
modalities combined are shown in Fig. 6, with numerical values presented in Table 1.
The best results of three psycho-physiological modalities– eye gaze, EEG and physio‐
logical features - were from the KNN method. For the performance, the best result was
from the SVM method. KNN method also achieved the highest accuracy, 81.57 %, for
feature fusion. The feature fusion outperformed all individual modality classification.

Fig. 6. The accuracies of different classifiers
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Table 1. Accuracies of each modality and all modalities with different methods

Feature
fusion

Physiolog‐
ical

EEG Eye Performance

SVM 72.03 % 61.32 % 60.35 % 60.99 % 69.41 %

NB 69.90 % 70.86 % 63.97 % 56.62 % 67.71 %

GMM 69.51 % 72.77 % 67.44 % 57.60 % 68.38 %

KNN 81.57 % 79.29 % 80.58 % 71.92 % 60.49 %

QCL 68.92 % 76.73 % 71.07 % 64.28 % 63.48 %

DT 63.50 % 69.99 % 63.79 % 62.62 % 68.67 %

LCL 76.65 % 67.03 % 59.29 % 58.24 % 67.71 %

3.2 The Decision Level Fusion and Hybrid Level Fusion Result

For the decision level fusion, we tested all classifiers for every modality to get the sub-
decision. We then tested various combinations of weights for every sub-decision. The best
accuracy was achieved when using SVM for performance modality features and KNN for
all three psycho-physiological modalities features. The weight for a sub-decision of one
modality was proportional to the best accuracy of the modality. The results indicated that
for one modality, the best method for decision fusion was consistent with the best method
for its individual classification. The best decision fusion accuracy was 80.95 %, which was
similar to the best accuracy of the feature fusion.

Hybrid level fusion outperformed the feature level and decision level fusion with a
best accuracy of 84.66 %. The best accuracy was achieved when eye gaze and EEG
features were combined for one sub-decision with KNN method and weight w1, phys‐
iological features for one sub-decision with KNN method and weight w2, and SVM
method and weight w3 for performance features (0.5 > w1 > w2 > w3 and
w1 + w2 + w3 = 1).

4 Conclusions

This paper focused on multimodal fusion for cognitive load measurement during driving
intervention for individuals with ASD. The signals for the cognitive load measurement
were composed of physiological signals, EEG signal, eye gaze, and performance data.

Seven machine learning methods were explored to classify individual modality
features and multimodal fusion. The KNN method yielded the best results for all the
psycho-physiological related features, features from physiological signal, EEG data, and
eye gaze. The SVM method yielded the highest accuracy for performance features.

This paper compared three levels multimodal information fusion approaches,
feature level fusion, decision level fusion and hybrid level fusion, for cognitive load
measurement. The multimodal fusion approaches outperformed individual modalities
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in cognitive load measurement. Hybrid fusion had the best result of 84.66 % compared
to other fusion methods.

The results will be used to choose an optimal game difficulty level for individuals
with ASD to provide a more challenging yet fruitful skill development opportunity in
the future.
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