Skip to main content

Near-Lossless PCA-Based Compression of Seabed Surface with Prediction

  • Conference paper
  • First Online:
Book cover Image Analysis and Recognition (ICIAR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9164))

Included in the following conference series:

Abstract

The paper presents a compression method based on Principal Component Analysis applied to reduce the volume of data in seabed Digital Terrain Model. Such data have to be processed in a manner very different from typical digital images because of practical aspects of analysed problem. Hence, the developed algorithm features a variable compression ratio and a possibility to control a maximal reconstruction error. The main objective is to build an orthogonal base and find a number of PCA coefficients representing analysed surface with an acceptable reconstruction accuracy. We present two variants of processing: an iterative compression approach and an approach predicting a number of coefficients before compression starts. It yields much lower computational demand and is faster. The later algorithm employs several statistical measures of an input surface describing its complexity at the prediction stage. Employed, simple classifier based on Classification and Regression Tree do not introduce high additional time overhead. Performed experiments on real data showed high compression ratios, better than for typical DCT-based methods. The possible application of developed method is modern data management system employed in maritime industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abousleman, G.P., Marcellin, M.W., Hunt, B.R.: Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT. IEEE Trans. Geosci. Remote Sens. 33(1), 26–34 (1995)

    Article  Google Scholar 

  2. Bruun, B.T., Nilsen, S.: Wavelet representation of large digital terrain models. Comput. Geosci. 29, 695–703 (2003)

    Article  Google Scholar 

  3. Cao, W., Li, B., Zhang, Y.: A remote sensing image fusion method based on PCA transform and wavelet packet transform. Neural Netw. Sig. Process. 2, 976–981 (2003)

    Google Scholar 

  4. Forczmański, P., Markiewicz, A.: Low-Level image features for stamps detection and classification. Adv. Intell. Syst. Comput. 226, 383–392 (2013)

    Article  Google Scholar 

  5. Forczmański, P., Mantiuk, R.: Adaptive and quality-aware storage of JPEG files in the web environment. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 212–219. Springer, Heidelberg (2014)

    Google Scholar 

  6. Forczmański, P., Markiewicz, A.: Stamps detection and classification using simple features ensemble. Math. Prob. Eng. Article ID 367879 (2014) (in press)

    Google Scholar 

  7. Fowler, J.E., Fox, D.N.: Wavelet based coding of three dimensional oceanographic images around land masses. In: Proceedings of the IEEE International Conference on Image Processing, Vancouver, pp. 431–434 (2000)

    Google Scholar 

  8. Franklin, W.R., Said, A.: Lossy compression of elevation data. In: Seventh International Symposium on Spatial Data Handling, Delft, pp. 29–41(1996)

    Google Scholar 

  9. Gaboardi, C., Mitishita, E.A., Firkowski, H.: Digital terrain modeling generalization with base in wavelet transform. Bol. de Cienc. Geodesicas 17(1), 115–129 (2011)

    Google Scholar 

  10. Hamilton, E.L.: Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am. 68(5), 1313–1340 (1980)

    Article  Google Scholar 

  11. IHO standards for hydrographic surveys, Publication No. 44 of International Hydrographic Organization, 5th Edition (2008). http://www.iho.int/iho_pubs/standard/S-44_5E.pdf

  12. Kazimierski, W., Zaniewicz, G.: Analysis of the possibility of using radar tracking method based on GRNN for processing sonar spatial data. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) RSEISP 2014. LNCS, vol. 8537, pp. 319–326. Springer, Heidelberg (2014)

    Google Scholar 

  13. Klimesh, M.: Compression of Multispectral Images. TDA Progress Report. 42–129 (1997)

    Google Scholar 

  14. Kukharev, G., Forczmański, P.: Facial images dimensionality reduction and recognition by means of 2DKLT. Mach. Graph. Vis. 16(3/4), 401–425 (2007)

    Google Scholar 

  15. Maes, J., Bultheel, A.: Surface compression with hierarchical powell-sabin B-Splines. Int. J. Wavelets Multiresolut. Inf. Process. 4(1), 177–196 (2004)

    Article  MathSciNet  Google Scholar 

  16. Maleika, W., Palczynski, M., Frejlichowski, D.: Interpolation methods and the accuracy of bathymetric seabed models based on multibeam echosounder data. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS 2012, Part III. LNCS, vol. 7198, pp. 466–475. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Maleika, W.: The influence of track configuration and multibeam echosounder parameters on the accuracy of seabed DTMs obtained in shallow water. Earth Sci. Inform. 6(2), 47–69 (2013)

    Article  Google Scholar 

  18. Maleika, W.: Moving average optimization in digital terrain model generation based on test multibeam echosounder data. Geo-Mar. Lett. 35(1), 61–68 (2015)

    Article  Google Scholar 

  19. Maleika, W., Czapiewski, P.: Evaluation of KLT method for controlled lossy compression of high-resolution seabeds DTM. Earth Science Informatics (in press). doi:10.1007/S12145-014-0191-1

  20. Pradhan, B., Mansor, S.: Three dimensional terrain data compression using second generation wavelets. In: 8th International Conference on Data, Text and Web Mining and Their Business Applications. WIT Transactions on Information and Communication Technologies 38 (2007)

    Google Scholar 

  21. Rane, S.D., Sapiro, G.: Evaluation of JPEG-LS, the new lossless and controlled-lossy still image compression standard, for compression of high-resolution elevation data. IEEE Trans. Geosci. Remote Sens. 39(1), 2298–2306 (2001)

    Article  Google Scholar 

  22. Stateczny, A., Wlodarczyk-Sielicka, M.: Self-organizing artificial neural networks into hydrographic big data reduction process. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) RSEISP 2014. LNCS, vol. 8537, pp. 335–342. Springer, Heidelberg (2014)

    Google Scholar 

  23. Stateczny, A., Łubczonek J.: Radar sensors implementation in river information services in poland. In: Proceedings of 15th International Radar Symposium (IRS), pp. 1–5 (2014)

    Google Scholar 

  24. Stookey, J., Xie, Z., Cutler, B., Franklin, W., Tracy, D., Andrade, M.: Parallel ODETLAP for terrain compression and reconstruction. In: GIS 2008: Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–9 (2008)

    Google Scholar 

  25. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  26. Wessel, P.: Compression of large data grids for Internet transmission. Comput. Geosci. 29, 665–671 (2003)

    Article  Google Scholar 

  27. Wright, D.J., Goodchild, M.F.: Data from the deep: implications for the GIS community. Int. J. Geograph. Inf. Sci. 11(6), 523–528 (1997)

    Article  Google Scholar 

  28. Xie, Z., Franklin, W., Cutler, B., Andrade, M., Inanc, M., Tracy, D.: Surface compression using over-determined Laplacian approximation. In: Proceedings of SPIE, vol. 6697. Advanced Signal Processing Algorithms, Architectures, and Implementations XVII, San Diego CA. International Society for Optical Engineering (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Forczmański .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Forczmański, P., Maleika, W. (2015). Near-Lossless PCA-Based Compression of Seabed Surface with Prediction. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2015. Lecture Notes in Computer Science(), vol 9164. Springer, Cham. https://doi.org/10.1007/978-3-319-20801-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20801-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20800-8

  • Online ISBN: 978-3-319-20801-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics