Skip to main content

Dynamic Perceptual Attribute-Based Hidden Conditional Random Fields for Gesture Recognition

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9164))

Included in the following conference series:

  • 1869 Accesses

Abstract

The demand for gesture/action recognition technologies has been increased in the recent years. State-of-the-art systems of gesture/action recognition have been using low-level features or intermediate bag-of-features as gesture/action descriptors. Those methods ignore the spatial and temporal information on shape and internal structures of the targets. Dynamic Perceptual Attributes (DPAs) is a set of descriptors of gesture’s perceptual properties. Their context relations reveal gestures/actions’ intrinsic structures. This paper utilizes the hidden conditional random fields (HCRF) model based on DPAs to describe complex human gestures and facilitate the recognition tasks. Experimental results show our model gains better performance against state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, G., Gao, Q.: A 3D gesture recognition framework based on hierarchical visual attention and perceptual organization models. In: ICPR, pp. 1411–1414 (2012)

    Google Scholar 

  2. Laptev, I., Lindeberg, T.: Space-time interest points. In: ICCV (2003)

    Google Scholar 

  3. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: VS-PETS (2005)

    Google Scholar 

  4. Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008)

    Google Scholar 

  5. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR (2008)

    Google Scholar 

  6. Klaser, A., Marszalek, M., Schmid, C.: A spatio-temporal descriptor based on 3D gradients. In: BMVC (2008)

    Google Scholar 

  7. Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling temporal structure of decomposable motion segments for activity classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 392–405. Springer, Heidelberg (2010)

    Google Scholar 

  8. Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: IEEE CVPR 2011, pp. 3337–3344 (2011)

    Google Scholar 

  9. Hernndez-Vela, A., et al.: Bovdw: Bag-of-visual-anddepth-words for gesture recognition. In: ICPR, pp. 449–452. IEEE (2012)

    Google Scholar 

  10. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: IEEE CVPR (2011)

    Google Scholar 

  11. Yang, X., Tian, Y.: Eigenjoints-based action recognition using naivebayes-nearest-neighbor. In: CVPR Workshops (CVPRW), pp. pp. 14–19. IEEE (2012)

    Google Scholar 

  12. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: CVPR, pp. 1290–1297 (2012)

    Google Scholar 

  13. Gaur, U., Zhu, Y., Song, B.: A “String of feature graphs” model for recognition of complex activities in natural videos. In: ICCV (2011)

    Google Scholar 

  14. Brendel, W., Todorovic, S.: Learning spatiotemporal graphs of human activities. In: ICCV (2011)

    Google Scholar 

  15. Xia, L., Chen, C.-C., Aggarwal, J.: View invariant human action recognition using histograms of 3d joints. In: CVPR Workshops (CVPRW), pp. 20–27 (2012)

    Google Scholar 

  16. Sminchisescu, C., Kanaujia, A., Li, Z., Metaxas, D.: Conditional models for contextual human motion recognition. In: ICCV (2005)

    Google Scholar 

  17. Wang, Y., Mori, G.: Max-margin hidden conditional random fields for human action recognition. In: CVPR (2009)

    Google Scholar 

  18. Hu, G., Gao, Q.: A non-parametric statistics based method for generic curve partition and classification. In: Proceedings of IEEE 17th ICIP, pp. 3041–3044 (2010)

    Google Scholar 

  19. Rapantzikos, K., Avrithis, Y., Kollias, S.: Dense saliency-based spatiotemporal feature points for action recognition. In: IEEE CVPR, pp. 1454–1461 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, G., Gao, Q. (2015). Dynamic Perceptual Attribute-Based Hidden Conditional Random Fields for Gesture Recognition. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2015. Lecture Notes in Computer Science(), vol 9164. Springer, Cham. https://doi.org/10.1007/978-3-319-20801-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20801-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20800-8

  • Online ISBN: 978-3-319-20801-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics