Skip to main content

Vehicle Detection Using Approximation of Feature Pyramids in the DFT Domain

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9164))

Included in the following conference series:

Abstract

Multi-resolution vehicle detection usually requires extracting a certain kind of features from each scale of an image pyramid to construct a feature pyramid, which is considered as a computational bottleneck for many object detectors. In this paper, a novel technique for the approximation of feature pyramids by using feature resampling in the 2D discrete Fourier transform domain is presented. Experimental results show that the proposed scheme provides higher detection accuracy than that provided by the state-of-the-art techniques on two sequences from LISA 2010 dataset, while maintaining the real-time detection speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://cbcl.mit.edu/software-datasets/streetscenes.

  2. 2.

    Code: http://vision.ucsd.edu/~pdollar/toolbox/.

  3. 3.

    Supplementary material shows several detection qualitative results https://www.youtube.com/watch?v=y5-m9c4TJMY.

  4. 4.

    The test is carried out on a PC with 2.9 GHz CPU.

References

  1. Sivaraman, S., Trivedi, M.: Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE Trans. Intell. Transp. Syst. 14(4), 1773–1795 (2013)

    Article  Google Scholar 

  2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogn (CVPR), vol. 1, pp. 886–893 (2005)

    Google Scholar 

  3. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the Conference on Computer Vision and Pattern Recogn. (CVPR), vol. 1, pp. 511–518, June 2001

    Google Scholar 

  4. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 34(4), 743–761 (2012)

    Article  Google Scholar 

  5. Dollár, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 91.1–91.11 (2009)

    Google Scholar 

  6. Maji, S., Berg, A.C., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: Proceedings IEEE Conference on Computer Vision and Pattern Recogn. (CVPR), pp. 1–8 (2008)

    Google Scholar 

  7. Dollár, P., Belongie, S., Perona, P.: The fastest pedestrian detector in the west. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 68.1–68.11 (2010)

    Google Scholar 

  8. Dollár, P., Appel, R., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 36(8), 1532–1545 (2014)

    Article  Google Scholar 

  9. Benenson, R., Mathias, M., Timofte, R., Gool, L.V.: Pedestrian detection at 100 frames per second. In: Proceedings of IEEE Conference on Comput. Vision and Pattern Recogn. (CVPR), pp. 2903–2910 (2012)

    Google Scholar 

  10. Sivaraman, S., Trivedi, M.: A general active-learning framework for on-road vehicle recognition and tracking. IEEE Trans. Intell. Transp. Syst. 11(2), 267–276 (2010)

    Article  Google Scholar 

  11. Bi, G., Mitra, S.K., Li, S.: Sampling rate conversion based on DFT and DCT. Signal Proces. 93(2), 476–486 (2013)

    Article  Google Scholar 

  12. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: Proceedings of the Conference on Comput. Vision and Pattern Recogn. (CVPR), pp. 3354–3361 (2012)

    Google Scholar 

  13. Kuo, C.H., Nevatia, R.: Robust multi-view car detection using unsupervised sub-categorization. In: Proceedings of the IEEE Workshop on Appl. of Comput. Vision (WACV), pp. 1–8 (2009)

    Google Scholar 

  14. Everingham, M., Gool, L.V., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Google Scholar 

  15. Naiel, M.A., Ahmad, M.O., Swamy, M.N.S.: Vehicle detection using TD2DHOG features. In: Proceedings of the New Circuits and Syst. Conf. (NewCAS), pp. 389–392 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada and in part by the Regroupement Stratégique en Microélectronique du Québec (ReSMiQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Omair Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Naiel, M.A., Omair Ahmad, M., Swamy, M.N.S. (2015). Vehicle Detection Using Approximation of Feature Pyramids in the DFT Domain. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2015. Lecture Notes in Computer Science(), vol 9164. Springer, Cham. https://doi.org/10.1007/978-3-319-20801-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20801-5_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20800-8

  • Online ISBN: 978-3-319-20801-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics