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Abstract. The mission of the Personalized Energy Reduction Cyber-physical
System (PERCS) is to create new possibilities for improving building operating
efficiency, enhancing grid reliability, avoiding costly power interruptions, and
mitigating greenhouse gas emissions. PERCS proposes to achieve these out-
comes by engaging building occupants as partners in a user-centered smart
service platform. Using a non-intrusive load monitoring approach, PERCS uses
a single sensing point in each home to capture smart electric meter data in real
time. The household energy signal is disaggregated into individual load signa-
tures of common appliances (e.g., air conditioners), yielding near real-time
appliance-level energy information. Users interact with PERCS via a mobile
phone platform that provides household- and appliance-level energy feedback,
tailored recommendations, and a competitive game tied to energy use and
behavioral changes. PERCS challenges traditional energy management
approaches by directly engaging occupant as key elements in a technological
system.

Keywords: Games � Gamification � Psychology � Energy efficiency � Human
factors � Cyber-physical systems

1 Introduction

Smart grid systems are rapidly being deployed across the world. They provide
opportunities for improving the reliability, efficiency, and adaptability of the electric
grid. Among an array of hardware and software upgrades, smart grid systems include
high-resolution meters to measure electricity use. For example, advanced metering
infrastructure (AMI) technology involves meters that collect near real-time usage data
(“smart meters”). However, the meters alone do not generate electricity savings.

Changing end-user behavior is key to an optimally functioning smart grid system.
A variety of technologies and programs already exist to involve end-users in power
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systems, but consumers are often not central considerations in technology design. Tech-
nologies that consider end-users as key players in power systems are urgently needed.

Leveraging behavioral science can improve our understanding of how to partner
with consumers in the smart grid to develop these technologies, and ultimately lead to
more efficient uses of energy. A wealth of research supports the effectiveness of various
tools in changing end-user energy behaviors. For instance, the provision of real-time
energy feedback to customers has proven to be a reliable strategy for achieving con-
servation. Energy savings tend to be higher for more granular feedback, which has been
greatly facilitated by smart meters. However, granularity in terms of specific behaviors
remains on the frontier of the field: no systematic study to date has had the ability to
provide real-time, personalized behavioral recommendations to reduce energy use—
they have been limited to providing household-level data, leaving end users to con-
template which behavioral changes might result in large savings. Separately, recent
advances in non-intrusive load monitoring (NILM) research are enabling the provision
of appliance-level feedback, though training NILM algorithms has proven challenging
and applications have not been widely tested. Involving end-users in the training
process offers one potential for addressing NILM research challenges.

To this end, the Personalized Energy Reduction Cyber-physical System (PERCS)
aims to promote energy efficiency and peak load curtailment by engaging building
occupants as partners in a user-centered smart service platform. PERCS uses a single
sensing point–a Wi-Fi-enabled service gateway-installed in end-user homes–to capture
smart meter data in real time. Machine-learning algorithms disaggregate the household
energy signal into individual load signatures of common appliances (e.g., air condi-
tioners), yielding near real-time appliance-level energy information, and creating a
smart home area network without the requirement of purchasing smart appliances. This
level of customization marks a substantial innovation from the status quo of
whole-house feedback. It eliminates the need for consumers to generate a mental list of
what is using energy in their home, which can be overwhelming and inhibit action.
Building additional opportunities for utility-customer engagement, users interact with
PERCS via a mobile phone platform that provides household- and appliance-level
energy feedback and timely, tailored recommendations. The user experience is tied to a
competitive game that leverages social influence. The system also solicits feedback
directly from end-users to improve disaggregation results. Finally, PERCS joins
anomaly detection approaches with NILM to enable appliance fault detection.

In the remainder of this paper, we describe shifting priorities in energy systems, and
describe how PERCS is designed to achieve future energy efficiency and demand
response (DR) goals. We also discuss how this system has been informed by and makes
contributions to the fields of computer science and behavioral science.

2 Literature Review

2.1 Shifting Priorities in Energy Systems

Despite the growing availability of renewable energy resources, current demand for
electricity, particularly at peak times of day, contributes substantially to greenhouse gas
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(GHG) emissions, which are associated with rising global temperatures [1] and
negative public health outcomes, including increased mortality rates [2]. The residential
and commercial sector is a major consumer of electrical energy and contributor to
electric power-related GHG emissions: from 1990–2012, the residential and com-
mercial sector accounted for the largest portion (35 %) of electric power-related GHG
emissions of any sector [3]. In addition to environmental and health impacts, even
relatively brief lapses in electric power reliability, which often occur when an over-
stressed grid cannot meet peak demand, have significant economic consequences.
Annual losses from power interruptions range from 150 billion Euros among European
Union businesses [4] to $80 billion in the U.S. [5]. Accordingly, electric utilities
allocate considerable resources to avoiding such interruptions and historically, have
invested in additional peak generating capacity (e.g., “peaker plants”), which generally
relies on traditional, higher-polluting generation sources (e.g., coal; [6]). Although
these strategies can help accommodate increasing demand, the associated economic
and environmental costs are substantial. As an alternative, growing efforts are being
made to manage demand by curtailing peak loads [6]. Advances in “smart grid”
technologies have facilitated this approach by improving demand predictions (e.g., [7]).
However, solving the problem of how to reduce demand merits further attention.

The U.S. Federal Energy Regulatory Commission (FERC) calls for DR programs
that encourage electric customers to make behavioral changes to curtail energy use [8].
Such programs can be effective in promoting overall energy conservation, with home
energy savings as high as 21 % [9]. With regards to peak demand and load-shifting
programs, however, the literature is relatively sparse. Despite the prevalence of these
programs, many have not been evaluated or published, and among those that have,
methodological limitations suggest areas for improvement (e.g., [10]).

Achieving the load reduction objectives of the coming decades will require higher
levels of customer engagement. The California Energy Commission (CEC) found that
the state’s DR programs have not met load reduction goals [11]. With DR program
participation rates estimated at less than 10 %, and actual compliance rates likely lower
[8], the CEC recommends focusing on customer engagement to move closer to DR
targets [11]. Toward this end, utility-consumer connectivity must be enhanced.
Programs must shift from a one-way, utility-to-consumer approach to a more inter-
active relationship. Research suggests that “gamified” programs may be better equip-
ped to attract users and sustain program engagement [12] and energy savings, over
time. With recent advances in human interface platforms, smart building infrastruc-
tures, and real-time mobile technology, now is the time to focus on the rapidly
developing area of technology-enabled behavior change.

Building occupants need actionable energy feedback (i.e., information about their
building’s energy use) in order to make informed energy management decisions.
Feedback has been found to be most effective when it is tailored, accompanied by
specific recommendations for reductions, and delivered digitally at the appliance-level
in an interactive manner [13, 14]. However, monitoring individual loads (e.g., at the
appliance level) is cost prohibitive [15, 16]. Instead, a solution that gathers highly
granular information while minimizing instrumentation is needed. PERCS offers these
features using a single sensing point, making it cost-effective and scalable.
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2.2 Computer Science Foundations

Energy disaggregation describes a set of statistical approaches to identify individual
loads (e.g., appliances) within a whole-building energy signal. Two primary methods
have been applied to electric energy disaggregation: (1) distributed direct sensing,
which involves monitoring individual appliance loads; and (2) single-point sensing,
also known as non-intrusive load monitoring (NILM), which uses statistical algorithms
to determine the state and energy use of individual appliances based on measurements
collected (e.g., voltage, current, frequency, harmonics, real and reactive power) via a
single sensing point on the incoming building power feed. Because load metering
requires more instrumentation and tends to be expensive, limiting its scalability, much
work has focused on NILM.

NILM approaches emerged in the 1980s [17]. As power data are collected, sta-
tistical approaches identify “events”, which represent state changes, and cluster them
into groups, which represent individual appliances. Correctly classifying appliances
with similar signatures presents a challenge. One recent advance for improving clas-
sification accuracy is to increase sampling rates, which addresses noise in the signal,
thereby improving multi-event discrimination and detection of state changes [15, 16].
To this end, studies suggest leveraging data streams from installed AMI meters
[15, 16], in part because such solutions can be cost-effective and scalable, given that
electric utilities have deployed millions of smart meters globally that provide
whole-home power measurements in intervals of seconds to minutes. Other studies
have achieved improvements in classification accuracy by considering non-power data,
such as time of day and temperature (e.g., [18]). It is noteworthy that approaches for
advancing algorithm performance have relied on pattern detection using non-human
inputs.

A major limitation of this work is minimizing the human factors element, a missed
opportunity that has resulted in the limited training of algorithms [16, 19, 20]. The few
studies that have considered user input and behavioral data have found a direct rela-
tionship between behavior and device usage [21] and have increased classification
accuracy [22]. These findings suggest that incorporating direct user input into the
NILM process can improve NILM results, and point to new research directions.

Also relevant to NILM is the issue of appliance performance degradation over time.
NILM can deliver an additional service by identifying, tracking, and addressing sub-
optimal appliance performance (i.e., appliance fault detection). To this end, anomaly
detection, which has been extensively studied among the signal intelligence (SIGINT)
community [23], offers a viable model. For example, Hidden Markov Models have
proven successful in detecting changes in observed behaviors [24]. However, little, if
any, of this research has been applied to the NILM context, in which there is oppor-
tunity to improve equipment operating efficiency. For instance, in a typical household,
anomalies can result from innocuous changes in end-user behavior (e.g., change in
frequency of opening/closing refrigerator door) or due to appliance performance
problems (e.g., fan bearing failure, etc.). A primary innovation of the current study is to
extend NILM research by leveraging SIGINT approaches.

Finally, little work has leveraged NILM to investigate real-world potential for
energy savings. The few studies that have done so have been on limited scales (e.g.,
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[16], [19]) with the exception of Chakravarty’s study [25], which showed promising
results of 14 % energy savings following provision of disaggregated energy feedback
via web and mobile interfaces among a sample of California households. Limitations in
the methodology of this latter study underscore the need for additional research.

PERCS extends NILM research in three fundamentally novel ways, by:
(1) engaging users as partners, directly building user feedback into training the models;
(2) integrating SIGINT anomaly detection approaches with NILM to enable appliance
fault detection; and (3) mapping the output of the NILM process to actionable insights
for end-users, offering a cost-effective smart service.

2.3 Behavioral Science Foundations

Previous behavioral science studies on residential electricity consumption have esti-
mated that households could realistically use 5–10 % less energy without adversely
impacting occupant comfort or well-being [26]. Newer technologies allow users to
achieve comparable output with less energy input, and upgrading appliances or using
appliances more efficiently offers an excellent opportunity to achieve reductions [3, 27].
In addition, people tend to underestimate the amount of energy required for household
activities, especially those that involve major household appliances [28].

Smart meter infrastructure can be leveraged to motivate residents to increase energy
efficiency through feedback. Historically, residents received only aggregated feedback
on a monthly or quarterly basis, making it difficult to connect their behaviors with
consumption. Behavioral research has shown that feedback can play an important role
in reducing energy consumption, with high-resolution feedback associated with greater
savings [13]. For instance, a recent meta-analysis of 57 residential energy feedback
studies found that disaggregated, real-time feedback was associated the highest mean
reduction of energy use at 12 % [9]. The same meta-analysis found a mean peak load
reduction of 13 % among 11 studies that targeted load curtailment. Although these
findings are promising, many of the studies included in the meta-analysis did not
undergo rigorous peer-review, as is true for the bulk of DR projects.

More importantly, energy feedback by itself may not be sufficient to motivate
change [29]. For feedback to generate a behavioral response, the individual must also
have a goal, and creating a specific plan for achieving an energy reduction goal has been
associated with greater savings [30]. In addition, research on financial framing and
incentives suggest that these tools are generally not effective at motivating reductions in
electricity consumption, and in some cases they result in increased consumption [31].
Among the feedback-frames tested to date, social comparison to peers has emerged as a
promising strategy for motivating electricity conservation [32, 33].

Finally, in line with the Theory of Planned Behavior [34], studies suggest that
energy technology acceptance is partially explained by perceived control over the
technology [35]. Direct control DR programs may achieve reliable reductions, but
participation rates are estimated at 10 % [8]. Evidence suggests that consumers may be
deterred from these programs due to privacy and autonomy concerns. Among the most
well-documented customer concerns regarding smart grid technologies are perceptions
that utilities can (1) directly control a variety of home equipment without consumer
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permissions or opt-out; and (2) infer specific behaviors in which occupants are
engaging [36]. In a similar vein, many consumers prefer choosing their own methods
for curtailing consumption to direct control technologies [35]. To gain greater accep-
tance, smart grid technologies should provide some level of consumer choice.

PERCS provides residents with near real-time feedback about their household and
appliance electricity consumption, along with specific recommendations for reductions.
This allows consumers to link discrete actions with electricity data, and to decide
whether they will change their behavior. The feedback is delivered in a gamified
context that allows for social comparison and for a non-pecuniary reward system,
a strategy that can potentially motivate users to reduce their consumption [32].

3 PERCS

The mission of PERCS is to create new possibilities for improving building operating
efficiency, enhancing grid reliability, avoiding costly power interruptions, and miti-
gating GHG emissions. PERCS proposes to achieve these outcomes by engaging
building occupants as partners in a user-centered smart service platform that motivates
behavioral changes. See Fig. 1 for a systems diagram.

3.1 Objectives

Our research objectives are to (1) improve energy disaggregation classification by
incorporating non-power features, most notably direct user input, into algorithm
training; (2) integrate anomaly detection approaches with NILM to enable appliance
fault detection along with a user alert system; (3) test the energy efficiency and peak
load curtailment potentials of deploying a gamified, user-centered NILM platform at
scale, with energy reduction goals of 15 % per DR event and 15 % for overall energy
efficiency; and (4) evaluate the effectiveness of appliance-level feedback and
behavior-contingent social rewards on electricity use among residential end-users.

3.2 Technical Approach

PERCS uses a single sensing point – a Wi-Fi-enabled service gateway installed in a
residence – to capture smart electric meter data at high resolution, and push the data
through a server where it is processed. The processed data are then presented to users as
novel information about their home energy use via a mobile phone application (app),
providing actionable, appliance-level information without the requirement of pur-
chasing individual smart appliances or smart plugs. The NILM process identifies
“events” in the power feed that indicate a state change of an appliance, typically
signifying a change of power. Machine learning algorithms then attribute non-power
features to that event, such as delta-power, time of day, and outdoor temperature, which
enable discrimination between similar load characteristics. Using these features, a
clustering algorithm groups these events into groups of similar events. Event-groups
that co-occur are then grouped into an “appliance-pattern”, which is linked to specific
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appliances based on additional non-power characteristics of state changes (i.e., only
runs when outdoor temperature is above 80 F). PERCS aims to refine appliance
classifications through soliciting feedback from users as part of the training process,
described below. Additionally, the system identifies patterns of suboptimal appliance
functioning and alerts users when it would be advantageous to replace or service
inefficient or failing appliances. PERCS features the following:

Leveraging User Input to Improve Classification. PERCS builds user feedback
directly into the NILM workflow through a process called “tagging”. PERCS prompts
users to identify an appliance that changed state in real time by sending notifications to
users’ mobile phones. This data improves differentiation between similar appliances
(e.g., stove and grill) as well as identification of appliances with multiple signals.
To encourage responses to tagging prompts, users earn points for responding as part of
the competitive mobile platform game, described in detail below.

Real-Time Algorithm Training. Running the entire NILM process continuously can
be computationally intensive. In PERCS, we add a unique parallel process that
streamlines the process, enabling it to run as new data are received. This real-time
identification process uses characteristic appliance data to identify state changes,
updating classification as appropriate as new data are received.

Fig. 1. Systems diagram
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Smart Appliance Insights for Users. Perhaps the most transformational of the PERCS
innovations is the insight engine, which uses NILM results to provide a valuable
service to end-users by triggering user notifications. The trigger comprises a decision
tree with specific conditional triggers, such as time of day, total power demand and
consumption, specific appliance power and run time, appliance efficiency, and other
metrics. From the insight engine, PERCS sends “Action of the Week” notifications to
users every week, each of which is a request to engage in one specific behavior tailored
to each user’s household based on identified appliances (e.g., “Keep your A/C off every
day this week from 1–4 pm”). These notifications serve as behavioral “triggers”, which
have been identified as a key component of behavior change [12]. This level of cus-
tomization marks a significant innovation from the status quo of whole-house feedback.
It eliminates the need for consumers to generate a mental list of what is using energy in
their home, which can be overwhelming and ultimately inhibit action. By eliminating
this step, PERCS provides a valuable service that enables consumers to focus on
executing a single, straightforward action to save energy.

Enhancing User Engagement. To produce and sustain an engaging user experience,
PERCS includes a game as part of the mobile platform under which users earn points
for complying with “Action of the Week” requests. Each “Action of the Week” is
presented to users via a push notification sent to their mobile phones, and includes the
following information: concise description of specific action to be taken, number of
points that can be earned for compliance, and dates and times of requested compliance.
Any given “Action” is active for a 1-week period, and users can earn points for
complying each day during that particular week. To maintain user engagement over
time, the platform offers opportunities to earn bonus points, which will be awarded on
intermittent schedules of reinforcement (e.g., points awarded for logging in, partici-
pating in tagging process). Users compete against one another for the highest rank
among the PERCS community via a public leaderboard that displays each participating
household’s selected username, point total, and rank, introducing social norms as
motivation to reduce usage. Point totals and leaderboard ranks are updated daily to
encourage frequent participation. To enable households who join the game relatively
later than others to “catch up” to households that joined earlier, leaderboard ranks are
adjusted daily to account for level of participation. For DR events, users receive special
push notifications one day ahead and one hour ahead of the scheduled event, with a
request to engage in a specific behavior to save energy.

Protecting User Data Privacy. To protect users’ data privacy, energy data, disaggre-
gation results, and other anonymous data are linked to an Anonymous User ID. All
identifiable data (e.g., address) are stored separately, linked by an Identifiable User ID.
Only the study team has access to both IDs to enable mapping between datasets. Select
pieces of secure code in the application programming interface have access to the proper
private keys required to link the Anonymous and Identifiable User IDs.

Anomaly Detection. PERCS expands on the disaggregation process by adding
anomaly detection to the platform in order to identify failing or inefficient appliances.
We leverage research from the U.S. Department of Energy-funded Building Level
Energy Management System (BLEMS; [37]) and the U.S. Office of Naval Research
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(ONR)-funded Geospatial Analysis of Motion-Based Intelligence and Tracking
(GAMBIT) projects [38]. In BLEMS, artificial neural networks and Bayesian Belief
Networks (BBNs) were trained to recognize office building occupancy patterns and to
detect anomalies. This information was used to calculate HVAC set points to simul-
taneously optimize energy efficiency and meet occupant comfort preferences.
In GAMBIT, BBNs were trained to recognize movement data (signals) and detect
normal and abnormal movement behaviors. PERCS incorporates these approaches to
identify, track, and address appliance degradation, using findings to trigger user alerts
regarding appliance functioning along with recommendations to service or replace
failing appliances at the optimal time.

Smart Building Services. We view energy efficiency, peak load reduction, user sat-
isfaction, and equipment performance as services – each often competing with the
other. A smart service platform that is designed to add capabilities over time, PERCS
currently offers the following: (1) detect and differentiate energy usage anomalies from
appliance performance degradation, including identifying the economic and environ-
mental “cross-over” point at which it is advantageous to replace an appliance; (2) tai-
lored to each participating household, suggest specific behaviors to improve energy
efficiency and reduce peak demand; (3) provide an engaging experience to occupants
using relatable information and social incentives.

If successful, future extensions of PERCS would enable remote appliance control,
integrate with DR forecasting to improve peak demand management, and/or offer
redemption of points earned as part of the game (e.g., gift cards, utility bill rebates).

4 Conclusions

PERCS introduces new possibilities for improving building operating efficiency,
enhancing grid reliability, avoiding costly power interruptions, and mitigating GHG
emissions. Using minimal instrumentation, we provide a cost-effective and scalable
solution for intelligent sensing. Additionally, PERCS offers a new model for engaging
utility customers, which may prove to be valuable for meeting DR and energy
efficiency goals. The platform allows end-users to monitor their behavior, receive
personalized feedback, and motivates behavior change via competition. If successful,
PERCS could be expanded to promote behavior change for other applications.

Using an interdisciplinary approach that combines social psychology, machine
learning, energy informatics, and network computing, PERCS challenges traditional
energy management approaches by directly engaging end-users as key elements in a
technological system, and provides a solution to the problem of how to achieve
reductions in peak demand. PERCS advances behavioral science and computer science
research by creatively mapping the output of the NILM process to actionable insights
via a relatable user platform; it improves the NILM training process without burdening,
but rather by engaging, end-users. Coupled with DR forecasting, PERCS holds promise
for reshaping the energy landscape.
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