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Abstract. The evolution of Information Technology (IT) and the emergence of
the Ambient Intelligence paradigm have drastically affected the way users live
and learn. Ambient Intelligence is a vision of the future that offers great
opportunities to enrich everyday activities (e.g., on the road, at home, at work,
etc.) and has been proven to play an important role in education. In smart
learning environments, learning activities are enhanced with the use of pervasive
and mobile computing. This paper presents an extensible software infrastructure
that empowers teachers to design and program purposeful and engaging learning
activities for formal and informal learning environments, by combining and
orchestrating cloud-based, ambient and pervasive facilities and services.
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1 Introduction

Ambient Intelligence is a vision of the future that offers great opportunities to enrich
everyday activities (e.g., on the road, at home, at work, etc.) through the pervasive
presence of a variety of objects – such as RFID tags, sensors, actuators, technologically
enhanced artifacts, etc. – which are able to interact with each other and cooperate with
their neighbors to reach common goals [17]. Such novel paradigm, also known as
Internet of Things (IoT), is rapidly gaining ground [2] and aims to revolutionize the
way people interact with computers, as smart environments will anticipate and react to
human needs even without users’ explicit commands [41].

In the meantime, people have also changed the way they learn due to the rapid pace
of life and the strong dependence on technology for their daily activities. Transferring
knowledge only through traditional classroom activities is considered obsolete, and
new learning methodologies, which make use of technology, have emerged to improve
the learning process by allowing learning in different locations. This sort of learning
occurs anytime and anyplace, when and where the learner desires. Smart learning
environments, rooted in intelligent tutoring and adaptive systems [10], context-aware
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ubiquitous learning [22], and mind tools [12], can be regarded as technology-supported
learning environments that make adaptations and provide appropriate support (e.g.,
guidance, feedback, hints or tools) in the right places and at the right time, based on
individual learners’ needs, which might be determined via analyzing their learning
behaviors, performance and the online and real-world contexts in which they are
situated [23].

A key aspect for such environments to achieve their full potential is the ability to be
open and extendable [16]. From an engineering perspective, these concepts outline the
need for appropriate middleware frameworks and communication technologies that
facilitate the introduction of new devices, services and software components [3]. On the
other hand, from a user perspective, they rather emphasize the scarcity of programming
methodologies and tools that could facilitate the construction of intelligent systems
using existing technologies [45].

Operators of learning environments are not experienced programmers. They are
teachers with limited, if not any, experience in computer programming, whereas the
programmability of the environment is more complex than creating a rule that turns on
the room’s light when someone enters [29, 46]. This paper aims to demonstrate a
prototype system that empowers teachers to create learning scenarios by reviewing and
modifying the high-level “business logic” of a smart learning environment in a
user-friendly manner through a visual programming platform.

2 Related Work

Within smart learning environments, various learning activities take place that make
extensive use of ICT technology. Contrary to the past, where the e-learning paradigm
dictated that digital technology was mainly used to gain access to learning content from
a stationary device (e.g., portable or desktop computer) and interact in a sandboxed
environment with it through specialized applications (e.g., e-learning portals), nowa-
days with the emergence of the Ambient Intelligence paradigm learners are able, and
often required, to interact with multiple devices (either purely digital or augmented
with technology) in order to accomplish predefined learning objectives, whereas in
many cases learners are required to participate in kinesthetic learning activities, i.e.,
physically engaging classroom exercises such as moving to a certain place to
accomplish a task [4].

For instance, [20] requires learners to use their mobile devices along with spe-
cialized equipment to analyze several poor quality power supply occurrences and then
share and discuss their findings with their classmates; the latter requires sharing content
with other devices in real time. In [14] the authors propose various learning activities
that require collaboration among multiple applications and multiple users in real-time.
Chang [9] taught recycling principles and [13] studied the effects of mobile blogging,
both applied in the wild. Finally, [47] have implemented a system aiming to increase
interactivity in the classroom by using mobile technologies. The emergence of this
novel paradigm is also supported by the fact that various EU-funded projects aim at
developing blended educational spaces where physical and digital artifacts are
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combined in learning activities, while digital and learning frameworks are developed to
modernize and improve education by motivating learners’ participation.

From the point of view of the learning experience, [43] identifies a set of
requirements for smart learning environments which comprises effectiveness, effi-
ciency, scalability, autonomy, engagement, flexibility, adaptiveness, personalization,
conversation and reflection. Many of the above requirements however are closely
related to the emerging paradigm of end-user development which dictates that at some
point the end-user should be able to modify a software artifact [21, 31]. To that end,
many alternatives have been proposed based on the visual programming paradigm, that
has been proven to facilitate inexperienced users to quickly learn how to build simple
programs [19]. Gray and Young [18] describes Virtuoso, a multi-user programming
environment built using the Valve’s Source engine that functions as a tool to allow
non-professional users to create interactive educational video games. Maloney et al.
[32] presents Scratch, a visual programming environment that allows users (primarily
ages 8 to 16) to learn computer programming while working on personally meaningful
projects such as animated stories and games. Chin et al. [11] reports a programming
environment for customizing smart home environments where the user demonstrates
the desired behavior and the system encodes it as a set of rules to be executed in
real-time. Kubitza [28] argues that building environments with heterogeneous inter-
connected devices still remains a challenging task and proposes a toolkit to cover this
technical complexity, so that designers and users of a smart environment can focus on
the interaction design and the programming of intelligent and useful behavior. The
majority of those systems employ a custom scripting language, embracing the concept,
stemming from the gaming engineering community, that “smarter, more powerful
scripting languages will improve game performance while making gameplay devel-
opment more efficient” [48].

3 Framework Requirements to Support SLEs

The emerging trend of mobile and ubiquitous computing has attracted numerous
researchers and vendors to build educational applications that benefit from innovative
technological affordances. Nevertheless, the majority of those mobile and ubiquitous
applications often do not meet their potentials due to the lack of tools that simplify their
interplay with the environment [5] and the contained affordances. Therefore, to enhance
the programmability of smart learning environments, a set of requirements were
elaborated during the implementation of the overall framework.

Currently, the majority of educational applications targeting ambient and ubiqui-
tous environments offer limited functionality as they operate within their own sandbox
[1, 6, 36, 37, 49]. However, as intelligent environments blend into our daily activities and
life-long learning becomes a necessity [42], the demand for federated educational services
and applications is constantly increasing, and the need for appropriate facilities and tools
becomes imperative. Thus, the proposed framework enables the development of com-
plex learning scenarios in which educational applications cooperate with existing
services/applications and benefit from ambient facilities (e.g., sensors, artifacts, etc.).
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Composition and module reusability are desirable characteristics, which in the
domain of software engineering partially determine the product quality. For that to be
achieved, the communication channels through which applications can exchange
information and the rules that mediate their interactions when forming complex fed-
erations are formally specified. Consequently, the proposed framework supports:
(a) seamless integration of new learning applications and services, (b) reuse of existing
facilities through composition & cooperation (based on semantic classification, com-
patibility checking, etc.), and (c) different degrees of openness [39] that will allow the
dynamic discovery and use of semantically equivalent services (e.g., based on avail-
ability, QoS, preference, etc.) (Fig. 1).

Within the available learning infrastructures [5, 7, 34], teachers and learners cannot
configure, let alone define, learning scenarios and activities. However, in the broader
domains of Ambient Intelligent and agent-based computing, various solutions have
been proposed [38] that facilitate the orchestration and dynamic adaptation of “exe-
cution scripts” that govern the entire process. Based on such well-known practices, the
proposed framework provides: (i) a mechanism that facilitates the semantic classifi-
cation of learning-oriented intelligent artifacts and services, and (ii) a “scripting” library
that will support the orchestration and customization of the various learning facilities
within ambient and ubiquitous learning environments. The library supports the defi-
nition of an appropriate context-sensitive decision-making logic, which can be
dynamically modified either explicitly by the teacher or implicitly through activity
monitoring (e.g., modification of the learning context, availability of available services
and artifacts, recognition of undesirable situations, etc.).

The concept of Ambient Intelligence is built around the notion of multiple objects,
embedded in the environment, being capable of recognizing and responding to the
presence of different individuals; those entities (i.e., people, objects) and their current
state of interaction are defined as contextual knowledge [15]. In order to design and
apply suitable learning strategies in the context of ambient environments, the exploi-
tation of contextual information is crucial. The proposed framework offers access to
contextual knowledge to support context-aware decision- making. Within smart
learning environments, the context of use includes [5, 15, 42]: (i) learner-related
attributes (e.g., schedule, performance, skills, etc.), (ii) intelligent objects and their
facilities, (iii) learning applications and services, and (iv) learning activities and their
requirements. Contextual knowledge is used for appropriately adapting the learning
process within various environments (e.g., benefit from technologically rich environ-
ments with multiple affordances, minimize interaction while on the move or when
available time is limited, etc.).

Fig. 1. High-level requirements for the AmIClass SDK
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4 Implementation Details

4.1 Overview

To satisfy the aforementioned requirements, the proposed work roots its core principles
in the game scripting paradigm that has been successfully applied within the last
decades and proposes a user-friendly scripting environment through which teachers can
monitor and modify the “high-level” business logic of the learning environments they
are in charge of through a visual programming language.

The AmIClass SDK offers a programming and a runtime environment that facili-
tates the definition, deployment, execution and monitoring of various learning activities
that make use of ambient facilities within smart learning environments. Figure 2
provides an overview of the proposed software infrastructure.

AmIClass SDK aims to enable the design of purposeful and engaging learning
activities for formal and informal learning environments, by combining and orches-
trating cloud-based, ambient and pervasive facilities and services (Fig. 2). To that end,
the following high-level components were implemented:

• A Service Mediator Agent (SMA) that integrates and provides access to ambient
and pervasive services. It can resolve services offered by: (a) smart objects such as
sensors, technologically augmented artifacts, interaction devices, etc., that expose
their functionality in the form of software services, (b) Knowledge hubs that collect
and provide personalized access to learning material from various content providers
or learning management systems, (c) Context-sensitive observers that facilitate
environmental monitoring and controllers that enable remote management,
(d) Software-as-a-Service [44] Learning Applications that deliver their functionality
over the network, (e) Profiling agents that simplify logging, enable personalization
and promote social interaction, and (f) Security safeguards that implement access
management policies.

Fig. 2. Overview of the AmIClass SDK
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• A distributed Learning Activities Orchestrator (LAO) that, through the SMA
services, monitor and orchestrate the learning process by controlling the physical
environment, as well as the learning services and applications. LAO facilitates:
(i) dynamic service binding and use, (ii) conflict resolution, and (iii) adaptation of
the activity workflow. Additionally, it supports the installation of external com-
posite modules that extend existing functionality and offer new features. Finally, it
supports the implementation of meta-services that can be integrated in the SMA to
enable the realization of composite learning scenarios.

• A Context-Aware Adaptation Module (CAAM) that facilitates the
decision-making process by evaluating rule sets that, based on the available con-
textual knowledge, determine which scenario alternatives should be applied or how
active scenarios should be reconfigured.

• An extensible Learning-Oriented Ontological Framework (LOF) that:
(a) Facilitates the classification of the environment and its smart objects, devices
and services, (b) Allows semantic mapping of data and services extending existing
knowledge, (c) Enables high-level semantic reasoning (e.g., is device X appropriate
for displaying private content, etc., (d) Delivers a unified profiling model,
(e) Simplifies services federation and reuse (including services dynamically added
at run-time), and (f) Enables communication of heterogeneous systems.

• A Design Environment (DE) for defining and configuring learning activities’
scripts.

4.2 Teacher-Friendly Features of the ClassScript Language

The ClassScript language aims to empower the definition of various learning scenarios
in smart learning environments. Based on the Service Mediator Agent and the various
distributed Orchestrators, any connected services are dynamically identified and using
appropriate programming facilities (e.g., reflection) are exposed, via dynamic code
generation, as external ClassScript modules that offer various functions. To support
both professional and non-professional programmers, two different visibility levels are
available, namely full access and teacher-friendly access, that aim to hide unnecessary
complexity from novice end-users (Fig. 3).

Fig. 3. Inspection process to export teacher-friendly functions and events
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A valid program in ClassScript has a well-defined structure (depicted in the Fig. 4)
which not only streamlines the parsing procedure, but most importantly facilitates its
manipulation from the visual editor by the teachers acting as a master template that
guides them. The structure is influenced by that of a program written in the C pro-
gramming language [25] and requires import statements to precede function declaration
that in turn precede the script’s initialization function. In more details:

• an import statement defines the service dependencies and is equivalent to an
include statement in C (e.g., find and resolve the necessary external services before
executing a single line of code).

• function declarations follow a C-like scope system. Function are not hoisted, thus
they can only be used if they have been declared beforehand [25]

• a script’s initialization function (i.e., the main function) defines the initial entry
point that prepares the necessary local structures and performs the registration of
event handling functions for local and remote events. Finally, each function
(including the init function) can contain all the usual programming constructs such
as arithmetic expression, variable definition, function calls, etc.

4.3 Web-Based Management Suite

Teachers can control the smart environment through a web-based Management Suite
by visually exploring the available programmable artifacts alongside with their scripts,

Fig. 4. A sample ClassScript program
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while they can adapt their business logic either by modifying existing or by introducing
new scripts. The teacher can browse through both stationary (e.g., Smart Desk [40],
Educational Mini-games station [26], the Book of Elli [33]) and mobile artifacts that
can be found in the environment. However, in such fluid environments, it is not only
the physical manifestation that matters, but also the overall functionality offered.
Therefore, teachers can browse through either physical instances (i.e., environment
monitoring and management) or through conceptual “service containers” that could be
instantiated anywhere at anytime (i.e., business logic manipulation).

For every artifact type, the teachers can explore: (i) the compatible services and (ii) the
associated scripts, while for every artifact instance they can further examine the status of
any deployed services as well (e.g., active, busy, idle, stopped). Similarly, for every
service, teachers can explore the exposed functions and the events that could be triggered,
alongside with the scripts that either consume any of the functions (i.e., direct use through
dependency injection) or listen for any of the events to react accordingly [8].

To facilitate programming by non-professionals, a visual editor is provided through
which teachers can view and modify the existing scripts or create new from scratch.
Teachers combine graphical blocks [24] that correspond either to basic programming
structures (e.g., loops, variable definitions, arithmetic expressions, etc.) or functions
stemming from service containers, in order to define the script’s sequential logic while
event-based programming is supported by connecting the appropriate event handlers to
the available hooks. Finally, upon script creation the teacher is able to immediately
deploy it to a single artifact instance or a family/group of instances or schedule its later
deployment.

An illustrative example is depicted in Figs. 4 and 5, which provide the textual and
graphical equivalent of the same program. Its objective is to discover all the smart
desks available within the current context of use, and for each one install the appro-
priate event handlers to be called when a person approaches the physical device or
when that person successfully authenticates himself as the authorized student for that
desk.

4.4 Distributed Runtime Environment

Smart learning environments inherently follow a distributed computing paradigm
where the various software components are located on networked computers or smart
artifacts that communicate and coordinate their actions by passing messages. Those
devices expose a set of core learning services (e.g., Smart Desk services such the
PUPIL [27] and the ClassMATE [30] frameworks) along with an instance of the
AmIClass Runtime Environment that can host the orchestration scripts written in
ClassScript and defining learning scenarios. Such orchestration scripts can be deployed
either locally on multiple targets to balance the overall workload (e.g., a script that
initializes every desk after a successful student authentication), or centrally in the
AmIClass cloud (e.g., the script that orchestrates the entire lecture and communicates
with the AmI-RIA subsystem [35]).

Therefore, the teacher can define at any time whether a script will be deployed
on a single or on multiple targets. The system validates whether the appropriate
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requirements are met (e.g., the required services are available in that host). When the
target of a script is defined, the main classroom orchestrator deploys an instance of that
script by appropriately notifying the local runtimes to download, parse and execute the
appropriate script. From that point on, the execution control is performed solely by the
local(s) orchestrator(s), while the main classroom orchestrator can manage it if nec-
essary by propagating the necessary commands (e.g., suspend the script that controls
the assistant facility when a quiz test has been started).

In case of a script modification that is currently active, the runtime environment
ensures that any pending activities are finalized before restarting all of its instances in
order to deploy the latest version. Currently, the update policy defines that during
restart any events emitted in between will be dropped, therefore scripts reinstate their
last state based on what has been saved before termination without cascading inter-
mediate effects. In a future extension, a more sophisticated cascading policy has been
planned; any events transmitted between script restarts will be stored in appropriate
buffers and will be propagated in a timely manner.

5 Conclusions and Future Work

The emerging trend of mobile and ubiquitous computing has attracted numerous
researchers and vendors to build educational applications that take advantage of the
innovative technological affordances. Nevertheless, the majority of the available

Fig. 5. The graphical equivalent of the above sample ClassScript program
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educational applications often do not meet their potentials due to the lack of tools that
simplify their interplay with the environment and the contained affordances. To this
end, this paper has presented an extensible software infrastructure that enables the
design of purposeful and engaging learning activities and speedups prototyping for
formal and informal learning environments, by combining and orchestrating
cloud-based, ambient and pervasive facilities and services.

The following high-level components have been implemented: (i) a Service
Mediator Agent that will integrate and provide access to ambient and pervasive ser-
vices, (ii) a distributed Learning Activities Orchestrator that will monitor and orches-
trate the learning process, (iii) a Context-Aware Adaptation Module that will facilitate
the decision-making process, and (iv) a Design Environment for defining and config-
uring learning activities’ scripts, while interoperability will be facilitate through a
common Learning-oriented Ontological Framework.

Future work includes: (i) the extension of the programming environment to make
use of the available semantic description of the services to validate their compatibility
and provide useful insights for the end-users, (ii) the extensive testing of the overall
infrastructure, (iii) the enhancement of the scenario modification process to support
on-the-fly updates that support cascading of events that happened during the update
process and finally (iv) the evaluation of the entire environment by HCI experts and
teachers in terms of usability and acceptance and by experienced developers of ubiq-
uitous applications in terms of completeness.
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