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Abstract. Functional mental state of operators in real-world workspaces is a
crucial factor in many cognitively demanding tasks. In this paper, we present our
recent efforts in studying electroencephalograph (EEG) biomarkers to be used to
assess cognitive states of operators. We studied these biomarkers from a simple
cognitive task to low- and high-fidelity simulated air traffic control (ATC) tasks,
with both novices and professional ATC operators. EEG data were recorded from
25 subjects (in three studies) who performed one of three different cognitively
demanding tasks up to 120 min. Our results identified two EEG components with
similar spatial and spectral patterns at the group level across all three studies,
which both indicated the time-on-task effects in their temporal dynamics. With
further developments in the future, the technology and identified biomarkers can
be used for real-time monitoring of operators’ cognitive functions in critical task
environments and may even provide aids when necessary.

Keywords: Functional brain imaging � EEG � Independent component
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1 Introduction

The functional mental state of operators is a determinant factor in task performance. It
depends on various cognitive factors including mental fatigue, mental workload, and
mental engagement, etc. In operational environments where high cognitive attention is
required, these factors can contribute to lapse in attention directly or indirectly, which
consequently lead to performance degradation [1]. Task-related behavioral measures
like errors or response time, or subjective evaluations like NASA task load index are
simple means in assessing performance variations [1, 2]. In recent years, many
researchers have attempted to identify and evaluate reliable metrics in electroenceph-
alography (EEG) to assess various cognitive states of operators [1, 3, 4].

Challenges remain in building portable, ease-to-use, and reliable EEG recording
systems to be used in real-world situations and in developing novel computational
algorithms in extracting useful information from recordings of such EEG systems.
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In comparison to classic EEG systems with electrodes using gel, wireless EEG systems
designed to collect high-density EEG data (64, 128 or 256 channels) at high sampling
frequencies using dry electrodes have been recently pursued [5]. These systems enable
data collection in naturalistic environments with minimal interference to users.

In most EEG studies on assessing mental states and/or cognitive functions in
real-world situations, frequency-specific oscillatory activities at channels of interest are
major targets to be investigated in identifying patterns. Besides limiting the assessment
to pre-defined channels, these methods usually emphasize only on temporal patterns
and cannot reveal complete spatial patterns of activities of interests. Furthermore,
channel-level EEG signals suffer from superimposition of multiple neural sources due
to the volume conduction effect [6].

In this paper, we summarized three of our recent studies in monitoring
mental/cognitive functions from lab bench experimental protocol, i.e. a speeded
color-word matching task, to low-fidelity simulation protocol, i.e. training oriented air
traffic control (ATC) task, and then to high-fidelity ATC simulation protocol. We
implemented a spatial filtering method called independent component analysis
(ICA) [7], based on the principle of statistical independence of source components in
EEG data, which are potentially associated with distinct neural substrates. The method
has been further advanced into the time-frequency ICA in one of our recent studies [6].
Our current results indicate that oscillatory activities in EEG components of interest in
each study showed consistent spatial patterns across studies and indicated increasing
dynamic patterns with the time-on-task effect.

2 Methods

2.1 Experimental Design

Figure 1 illustrates the three studies in the order of varied fidelity and realistic con-
figurations. The details of each study are described as follows. Written informed
consents were obtained from all subjects prior to their participation in the study.

Study I. Ten healthy college students (20−29 years, all males) were recruited at the
University of Oklahoma. Subjects performed a speeded color-word matching Stroop
task [7] implemented using E-prime (for further details see [8]). They were required to
judge the congruency between word meaning and ink color, and respond by pressing a
button within 1400 ms. Each subject took part in two sessions of about 20 min each
with a pseudo-randomized sequence of 390 trials, divided into 3 blocks.

Study II. Ten subjects (21−33 years, all males) were recruited at the University of
Oklahoma. Subjects participated in two 2-h sessions of ATC tasks in low-fidelity
simulation generated by CTEAM V2.0 [9, 10]. They were required to perform control
actions (i.e., change direction of heading, speed and altitude level) on aircraft to reg-
ulate and maintain smooth air traffic flow using mouse.

Study III. Five certified professional controllers (54−60 years, all males) were
recruited at FAA CAMI, Oklahoma City. Subjects performed 2-h ATC tasks in an
high-fidelity en route environment on En route automation modernization (ERAM)
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interface [11]. They were asked to safely navigate aircrafts across designated airspace
using slew-ball, keyboard and voice commands.

2.2 Data Analysis

In Study I and II, 128-channel EEG data were recorded at sample frequency of 250 Hz
using an Amps 300 amplifier (Electrical Geodesics, Inc., OR, USA). In Study III,
64- channel EEG data were recorded at sample frequency of 1000 Hz using a Brain-
Amp amplifier (Brain Products GmbH, Munich, Germany).

All EEG data were offline filtered with a band-pass filter of 0.5−30 Hz. Prepro-
cessing steps of bad channel removal, bad epoch removal and artifactual independent

Fig. 1. Illustration of tasks in three studies
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components (ICs) subtraction, were sequentially performed at each session data. In
Study I, data in epochs from 1500 ms before to 2300 ms after stimulus onset were
selected. In Study II and III, data points at peaks of global field power (GFP) data were
selected for each session. The selected data from each study were combined and a
group-wise ICA method was applied to identify ICs of interest [12]. Similar brain
related IC patterns of interest among three studies were selected from individual studies
based on spatial patterns. Then oscillatory power dynamics from each IC were cal-
culated and transformed to dB to probe the time-on-task effect as follows. In Study I, an
epoch of 700 ms pre-stimulus to stimulus onset for each trial was selected. The spectral
powers of all epochs in each block were averaged and repeated measures analysis of
variance (ANOVA) was performed using blocks as an independent variable. In
Study II, each IC’s spectral-temporal dynamic was fitted with a linear regression line
for each session and the detection of significant positive slopes of the fitted lines was
tested via a binomial test. In Study III, the period of first (T1) and last (T2) 10 min of
the task were selected and their spectral powers in each IC were compared using t test
for individuals.

3 Results

3.1 ICs of Interest

Two distinct brain activities related ICs (named as the frontal IC and the parietal IC;
Fig. 2) were similarly identified in terms of spatial and spectral patterns in each study.
The frontal IC indicated a spectral peak in the theta band (5- < 8 Hz), while the parietal

Fig. 2. The spatial and spectral patterns of two selected ICs
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IC indicated a spectral peak in the alpha band (8 - < 13 Hz). Consequently, subsequent
analysis was only performed on these frequency bands for each IC.

3.2 Dynamics of EEG Components

In Study I, the oscillatory dynamics from all ICs augmented within each session, which
revealed the tendency of significance in ANOVA tests (Table 1). For the frontal IC, t
tests indicated a significant increase of the theta power from Block 1 to Block 3
(p = 0.01) and Block 2 to Block 3 (p = 0.02) in session 1 and from Block 1 to Block 3
(p = 0.04) in session 2. Similarly, for the parietal IC a significant increase of the alpha
power was observed in both sessions from Block 1 to Block 3 (p < 0.001) and Block 2
to Block 3 (p < 0.005).

In Study II, the linear regression analysis indicated a significant (p < 0.05)
regression model of positive slope (PRS) in most subjects for the frontal IC (8 out of 10
subjects in both sessions) and for the parietal IC (all subjects in session 1, and 8 out of
10 subjects in session 2), which were significant from a binomial test (Table 1).

In Study III, for the frontal IC, t tests indicated a significant increase of the theta
power from T1 to T2 in subject 3 and 4, while a significant decrease in subject 2. For
the parietal IC, a significant increase of the alpha power from T1 to T2 was detected in
subjects 1, 4 and 5 (Table 2).

4 Discussion and Conclusion

In this paper, we presented our recent studies in monitoring mental/cognitive perfor-
mance with tasks of different fidelity levels and at various experimental conditions. We
explored IC-level oscillatory patterns from EEG signals for the feasibility of evaluating
mental state, especially mental fatigue. Three studies with different cognitive demands
were conducted, in which subjects were required to utilize sufficient cognitive rea-
soning and mental attention to accomplish the task goals. The tasks varied from simple
single decision making in a repetitive cognitive task, to low- and high-fidelity task
requiring processing of sensory information from multiple inputs and making complex
cognitive decisions. The subjects in Study II were college students who are novice in
ATC task, while the subjects in Study III were experienced ATC professionals. These
studies from basic to real-world simulations and from novice to professionals enable us
to develop technologies to inch closer to be deployable real-world task monitoring. In
this paper, we presented the first evidence that similar brain patterns can be observed
across various cognitive tasks, whether they are well-controlled or close to real-world
situations. We also presented results related to the time-on-task effect, which is also
known as the time-on-task mental fatigue. This is achieved with the novel EEG signal
processing techniques (i.e. ICA), which is able to extract EEG component signals that
arise from distinct brain regions. Variations in oscillatory dynamics of identified EEG
components suggest the time-on-task effect in each study.

In the present study, two ICs representing distinct brain functions: cognitive control
(i.e., the frontal IC) and attention (i.e., the parietal IC), were identified in all three
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studies. The frontal theta activity has been observed in many cognitive tasks that
require concentration, attention, and short-term working memory [13], while the
parietal alpha is thought to be critical in attention control mechanism during a complex
human-computer interaction [14]. Two IC-based oscillatory dynamics suggest gradual
increasing patterns in dominant spectral band with time on task in all studies. The
increasing parietal alpha power suggests deteriorated attention levels in subjects while
the increasing theta power indicates that more cognitive resources needed to fulfill
cognitive demands from the tasks. Both phenomena have been reported as indicators of
mental fatigue [15]. More complex dynamic patterns of the frontal theta power in
professionals in Study III might suggest the effect of their training and working
experience in battling the time-on-task mental fatigue in tasks that have zero tolerance
to errors and failures. Furthermore, our recent data using engagement indices based on
the ratio of the beta to the sum of alpha and theta band power showed consistent
dynamic patterns across subjects [16], which suggests better biomarkers might be
developed with information from multiple frequency bands.

Compared to Study I, both Studies II and III, which mimicked realistic ATC tasks
and duration, allowed us to evaluate these phenomena in real-world condition. Our
findings from these three studies indicate the consistent pattern of the time-on-task
effect on different tasks, similar to some previous studies [15]. It is noted that, although
we only reported data related to the time-on-task effect here, other behavioral metrics
like response time, mouse clicks or key presses have been used to evaluate our EEG
component data [6, 8, 10, 17, 18], in which significant correlations have been identified
and indicated that these phenomena can be used to study other factors in monitoring
mental/cognitive functions, e.g., mental workload and effort. In the future, more
studies, including real ATC tasks, should be conducted to further explore the capability
of the proposed technique and associated discoveries from its implementation.

EEG is a direct measure of neuronal electrical activities, and has been largely used
to evaluate mental states of human being in neuroergonomics [4]. Compared to
behavioral data, EEG data has the advantage that it can be obtained and analyzed
continuously. Our recent efforts on computational data analysis method development
have advanced the capability of using EEG in real-world situations. Together with
recent non-prep sensor and portable and wireless hardware developments, this tech-
nology can be translated to in-field uses in many areas. In terms of monitoring
mental/cognitive functions, our recent data suggest that brain processes including
working memory, performance monitoring and decision-making from a brain network
are required to accomplish cognitive tasks. Our technique reveals oscillatory dynamics
of EEG components indicative of these brain processes. The present results indicate
that the proposed technique can assess mental state of, such as, ATC operators in
real-world conditions that need to be error free for public safety.
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DOT-FAA 10-G-008.
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