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Abstract. Mathematical models of learning have been created to capitalize on
the regularities that are seen when individuals acquire new skills, which could be
useful if implemented in learning management systems. One such mathematical
model is the Predictive Performance Equation (PPE). It is the intent that PPE
will be used to predict the performance of individuals to inform real-world
education and training decisions. However, in order to improve mathematical
models of learning, data from multiple samples are needed. Online data
repositories, such as Carnegie Mellon University’s DataShop, provide data from
multiple studies at fine levels of granularity. In this paper, we describe results
from a set of analyses ranging across levels of granularity in order to assess the
predictive validity of PPE in educational contexts available in the repository.

Keywords: Performance prediction � Datashop � Repository � Learning
optimization � Mathematical models

1 Introduction

In many real world domains, there is a recurring need to educate both workers and
students in order to equip them with new skills or to ensure that a baseline standard of
knowledge and performance is met. Time and cost are relevant factors when deciding
whether continuing education or refresher training should be required, as are the
potential risks associated with ignorance or decreased proficiency. This complex and
consequential trade space is motivating the development of learning management
systems that attempt to improve either the quality or rate at which individuals learn or
can allow training to be tailored to specific individuals. One way that these goals can be
accomplished is for these systems to employ different mathematical models of learning
that can be used to generate predictions of future performance of either an aggregate
sample or specific individuals in order to inform education and training decisions. This
presents an opportunity for basic cognitive science research to find real-world
application.

Psychological research has long noted that humans exhibit certain mathematical
regularities when learning new knowledge and skills [2, 8]. The Predictive
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Performance Equation (PPE) (described in the following section) is a mathematical
model of learning, forgetting, and the spacing effect that uses the historical performance
of individuals to generate a prediction of their future performance [4]. The PPE was
developed from Anderson and Schunn’s [1] General Performance Equation (GPE),
which captured the important influences of the power laws of learning and forgetting as
determinants of performance. To improve upon the GPE, Jastrzembski et al. [4]
introduced the PPE, taking into account the effects on performance of temporal spacing
between instances of practice [2]. The PPE has been validated across many samples of
data from laboratory studies on learning and retention [5].

A typical limitation of archival publications in the literature regarding learning and
retention is that data are only reported at the sample level of analysis. In other words,
data regarding measures of central tendency and variability are only reported at the
level of the entire sample, or at best the level of the experimentally manipulated
sub-samples of interest. This is understandable and generally serves the proximal
scientific objective of each particular study quite well. However, most of the real world
applications of technologies like learning management systems involve assessment at a
finer level of granularity, down at the level of the individual learners. For that level of
analysis we generally need source data, rather than archival, summative publications.
This is the sort of niche intended to be filled by online data repositories. Repositories
can be used to test model predictions and explore new uses of different models of
learning. One such data repository is DataShop located on Learnlab.org, created by the
National Science Foundation-funded Pittsburgh Science of Learning Center [7]. It
holds a large set of publicly available data that can be used to further learning research
objectives, and this paper describes a case study using DataShop for exactly that
purpose. In this case, we used data available on DataShop to advance our performance
prediction research using fine-grained third-party data available on its public database.

A primary intended application of the PPE is in adaptive scheduling of continuing
education and refresher training. To accomplish this we will use a real-time calibration
update method, which has PPE make multiple sequential predictions about the per-
formance of a sample or individual over time, re-calibrating and updating it prediction
of future performance each time a new data point becomes available. Implementing the
PPE in this way may be beneficial in two ways. The first possible benefit is, that the
PPE can take into account the entire historical performance of a group or individual in
order to generate a prediction of what their future performance might be. Using the
entire available historical performance of a sample or individual to generate a pre-
diction is useful especially within applied domains where more variability is seen in
human performance compared to the performance seen in controlled short-term labo-
ratory studies. The second possible benefit is, by allowing the model to calibrate to all
of the available instances of learning, the PPE can make a more informed prediction of
what the sample or individual’s performance will be during the next event, a prediction
that would be useful to inform training decisions. However, it is currently unknown
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whether the calibration update method gives rise to better predictions over time, or if it
allows for informative predictions to be made at different levels of aggregation (e.g.,
the aggregate performance of an individual across multiple tasks or the aggregate
performance of a sample over multiple or single tasks).

In this paper, data collected from thirteen different classroom tutoring studies1

exported from DataShop were used to perform a validation analysis of PPE using the
calibration update method. The PPE was used to predict the performance of multiple
samples across several levels of aggregation over different numbers of events, mim-
icking how PPE would be used in an applied domain. We examined how both the level
of aggregation and the number of calibration and prediction events affected PPE’s
general ability to both fit the initial performance and predict future performance when
implemented using the calibration update method.

2 The Predictive Performance Equation

The PPE is a hybrid model of learning and forgetting that predicts future performance
by exploiting the mathematical regularities seen when individuals acquire a skill or
learn new information, based on the amount of experience they have had on a given
task and the amount of time in between instances of practice. The PPE works by
calibrating to historical performance data using three free parameters (Eq. 1).

Performance ¼ S � ST � Nc � T�d ð1Þ

The three free model parameters are S (scalar), used to accommodate the perfor-
mance measure of interest (e.g., Error Rate, Percent Correct, Response Time, etc.),
c (learning rate), and d (decay rate). There are also fixed parameters determined by the
timing and frequency of events in the protocol, such as T, the amount of true time
passed since the onset of training, and N, the discrete number of training events that
occurred in the training period. ST (Eq. 2) is the stability term that “captures the effects
of spacing, by calibrating experience amassed as a function of temporal training dis-
tribution and true time passed” [6, p. 110].

St ¼
P

lag
P

� Pi

Ti
�
P j

i ðlagmaxi;j � lagmini;jÞ
Ni

ð2Þ

Lag denotes the amount of wall time that has passed since the last training event
and P is the amount of true time amassed during practice. Once the PPE has calibrated
to the set of historical data points, it uses the learning and decay rates, the amount of
experience on a task(s), and the time since its previous instance of practice to generate a
quantitative point prediction of future performance for the sample or individual [5].

1 The thirteen studies used in this paper are listed in the acknowledgement section, per instructions of
DataShop.
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3 Studies Collected from DataShop

DataShop is a repository of data collected from different learning and tutoring studies.
A single sample on DataShop is referred to as a dataset, which is composed of a record
of performance of individuals who attempted to solve a set of problems in a specific
domain within a certain period of time [3]. For example, one dataset in the repository
contains a record of students’ performance when solving physics problems in a tutoring
system used at the United States Naval Academy over the Fall 2007 semester. Each
dataset contains a record of the performance of each individual across that curriculum’s
content. Each curriculum is made up of problems, defined as “a task [attempted by] a
student usually involving several steps” [3]. An example of a problem in the physics
tutor is comparing the difference in velocity between train A and B. Successfully
solving a problem involves completing a series of steps, which are “an observable part
of a solution to a problem” [3], such as finding the velocity of train A, which subjects
attempted to solve over the course of the study. In the analysis presented here, we
examined performance on the individual steps within a dataset, because they repre-
sented the distinct pieces of knowledge and skills learners were acquiring, over the
course of the study.

3.1 Data Organization

All of the data from each dataset was organized into three different levels of aggre-
gation. The first and highest level of aggregation was a sample’s performance across
multiple steps, defined as a sample of data from a single dataset composed of indi-
viduals who all had the same number of opportunities to complete the same steps. The
second level of aggregation was a sample’s performance on a specific step, defined as a
sample of individuals from the same dataset who all had the same number of oppor-
tunities to attempt the same step. The third level of aggregation was an individual’s
performance across multiple steps, defined as a sample of steps done by the same
participant.

Due to the fact that a majority of the datasets used for these analyses were recorded
on tutoring systems that students used to complete their homework throughout the
semester or year, each individual within a dataset did not have the same number of
opportunities to complete each step (e.g., One individual could have had four oppor-
tunities to attempt a single step, while another individual had eight opportunities to
attempt the same step). Each student did not have the same number of opportunities to
attempt all steps because either an individual dropped out of the class or showed a high
enough competence on a particular problem and was not presented with any more
opportunities to solve that step. In order to create equivalent samples (subsets), that
included the same individuals, attempting the same steps, for the same number of times
for each of the three levels of aggregation, multiple subsets from each dataset were
created. Subsets were constructed based on the number of opportunities that individual
participants had with specific steps within a dataset.

For example, one participant could have had six opportunities to attempt steps A
and B and eight opportunities with steps C and D, while only having four opportunities
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to attempt step E. In order to formulate a subset whose performance is aggregated over
this individual’s data where each step was done for the same number of times, one
subset can be composed from this individual’s first four opportunities with steps A, B,
C, D, and E, creating four unique events where each step was done once. A second
subset can also be composed from the individual’s first six opportunities with steps A,
B, C, and D, creating a subset of data with six unique events. This process of separating
the data in order to create multiple subsets comprised of four to nine events was
repeated across all thirteen datasets for each level of aggregation.

Error rate was used as a dependent measure, determined by the individual’s first
attempt at each step (i.e., correct or incorrect). The error rate was calculated by the
percentage of incorrect first attempts across all of the steps done at each event within a
subset. It is expected that the error rate will be highest at the subset’s first event,
because it is the first time participant(s) will have attempted to solve these steps.
Additionally, error rate should decrease in subsequent events as individual(s) gain more
experience solving these steps over time.

After each dataset was sorted into multiple subsets for each of the three different
levels of aggregation, two different criteria were used to decide whether a subset was
included or excluded from the exploratory analysis. The first criterion was that the
subset’s performance had to improve over the period of time that it was observed, and
was assessed by comparing the error rate of the first and last event. Subsets of data
where the error rate was higher on their final event than on their first event were
excluded from our analysis, due to the fact that the PPE would not be able to account
for their performance. Of all the subsets that were compiled from the thirteen datasets,
18 (26 %) of subsets aggregated over a multiple steps, 1745 (56 %) of subsets
aggregated over a single step, and 2006 (47 %) subsets aggregated over an individual
were excluded from our analysis for not meeting the first criterion. The second criterion
was that the number of steps present at each trial had to be greater than or equal to the
number of events within a subset. Thus, if a subset whose performance was aggregated
over an individual participant was observed over nine events, their performance had to
be aggregated over a minimum of nine individual steps. The same criterion was used
for subsets aggregated over a single step, though to be included in our analysis a
minimum number of participants were required. A minimum number of steps or par-
ticipants were required for each subset because it was found that the error rates of
subsets aggregated over a few steps or participants (e.g., one or two steps) were highly
variable. Minimal changes in performance of subsets aggregated over a few steps or
individuals caused large fluctuations in their error rates (e.g., a subsets error rate could
go from 100 % on event one to 0 % on event two and 50 % on event three), which PPE
could not account for. From the subsets that met the first criterion, 551 (58 %) of
subsets aggregated over multiple subsets and 652 (33 %) of subsets aggregated over an
individual were excluded for not also meeting the second criterion. All remaining
subsets, which met both criteria, were used in the exploratory analysis (Table 1).
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3.2 Calibration Updating with the Predictive Performance Equation

The PPE was run the same way on each subset across all three levels of aggregation,
following the calibration update method. The PPE began by calibrating to the per-
formance of the first three events of each subset (the minimum number of events
needed for the PPE to make an initial prediction), then made a prediction about the
subset’s performance on their remaining events. After its initial prediction, PPE then
updated its prediction by calibrating to all of the previous events plus one additional
event and again generated a prediction for the subset’s performance on the remaining
events. The PPE continued to predict the performance of a subset’s remaining events
until it had calibrated up to the second to last event.

4 Results

The goal of this study was to examine PPE’s ability to both account for and predict
performance of subsets across multiple datasets at different levels of aggregation. In
order to address these goals, we assessed PPE’s ability, (a) to calibrate to the initial
performance of a subset (calibration period) and (b) to predict the performance of future
events (prediction period). To examine the overall ability of PPE to calibrate to the
subsets’ initial performance, the R2 and RMSD of the calibration period for each
prediction was computed and averaged over subsets where PPE had calibrated to the
same number of events from the same level of aggregation (e.g., subsets whose per-
formance was aggregated over a single individual and where PPE had only calibrated
to the performance of the first three events). In order to examine PPE’s ability to predict
the performance of subsets’ future events, the R2 and RMSD of the prediction portion
for each prediction made by PPE was computed and averaged over subsets from the
same level of aggregation where PPE had both calibrated to and predicted the per-
formance of the same number of events (e.g., subsets whose performance was aggre-
gated over multiple steps, where PPE had calibrated to its first three events and
predicted the performance of on its last three events). The overall R2 for each of PPE’s
predictions were not recorded when predicting the performance of a subsets’ last two
events, because the R2 of the prediction portion was always one between the PPE’s
prediction and the subset’s performance of their last two events – it is simply a best
fitting straight line. The overall R2 of the prediction period could not be computed
when only predicting the performance of the last event because a R2 could not be
calculated with only one event. To examine the change in PPE’s predictions of

Table 1. Shows the total number of subsets comprised of different numbers of events across all
three levels of aggregation that were included in the exploratory analysis.

Level of aggregation Number of events in a subset Total
4 5 6 7 8 9

Subsets aggregated over multiple steps 14 12 12 10 8 10 66
Subsets aggregated over a single steps 331 136 105 81 61 57 771
Subsets aggregated over an individual 410 314 234 203 104 90 1355
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performance of a single event while calibrating to additional instances of performance,
the residual between PPE’s prediction and a subset’s performance on the last event was
recorded after each prediction. The absolute value of the last residual of each prediction
was then averaged across subsets from the same level of aggregation where PPE had
predicted over the same number of events.

4.1 Calibration Period

Calibration period R2 and RMSD varied only slightly as a function of aggregation.
Looking across the three levels of aggregation, the average R2 for subsets whose
performance was aggregated over multiple steps (M = .83, SD = .20) did not differ
greatly from subsets aggregated over a single step (M = .78, SD = .29) (Fig. 1). The
average R2 of subsets whose performance was aggregated over a single individual
(M = .73, SD = .28) was slightly lower still (Fig. 1). The level of aggregation was found
to have a similar effect on the overall RMSD values, with fit quality (in this case
meaning a lower RMSD) positively correlated with the level of aggregation (Fig. 2).
The average RMSD when PPE calibrated to the first three events of a subset’s per-
formance was lowest in subsets’ aggregated over multiple steps (M = .01, SD = .03),
with little difference being seen in subsets’ aggregated over a single step (M = .04,
SD = .06) or individual (M = .05, SD = .03) (Fig. 2). The results from the average R2

and RMSD of the calibration period across each of the three levels of aggregation show
that the ability of PPE to fit the initial performance of a subset’s performance in part
depends on the granularity of the data.

The pattern holds across levels of aggregation, as we increase the number of cali-
bration points, but fits deteriorate as the number of calibration data points increases. The
highest average R2 and the lowest RMSD at each level of aggregation, occurred when
PPE calibrated only to the performance of a subset’s first three events (Figs. 1 and 2).
The average R2 of the calibration period decreased and the average RMSD increased,
meaning that the calibration fits get worse, as PPE calibrated to each additional event.
The impact of adding calibration events is stronger on the R2 than on the RMSD, which
increased but only slightly as PPE calibrated to additional events. Although, the overall
ability of PPE to calibrate to additional events decreased as the number of events
calibrated to increased, it is how these results affect PPE’s ability to predict future
performance that is the more important question when assessing the effectiveness of the
calibration update method.
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Fig. 1. Shows the average R2, ± one standard deviation (SD) of the calibration period as a
function of the number of events calibrated to, across the three levels of aggregation.

Fig. 2. Shows the Average RMSD, ± one standard deviation (SD) of the calibration period as a
function of the number of events calibrated to, across the three levels of aggregation.

Fig. 3. Shows the average R2, ± one standard deviation (SD) of the prediction period as a
function of the number of events calibrated to, across the three levels of aggregation.
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4.2 Prediction Period

The number of events PPE calibrated to affected its prediction accuracy (Figs. 3 and 4).
The worst prediction accuracies (lowest average R2 values and the highest average
RMSD) across all three levels of aggregation occurred when PPE calibrated to the
subsets’ performance on their first three events and predicted the performance of their
remaining events. The R2 increased, and the RMSD decreased as PPE calibrated to
additional events across all three levels of aggregation. The only exception to this trend
occurred in subsets aggregated across multiple steps comprised of nine events. In these
subsets, the overall R2 of the prediction period decreased after PPE calibrated to the
first five and six events and predicted the performance on the remaining four and three
events.

The average last residual between the PPE’s prediction of a subset’s performance
on their final event varied as a function of the level of aggregation (Fig. 5). The
smallest average residual across each level of aggregation was found to be when
predicting the performance of subsets aggregated over multiple steps (M = .04,
SD = .04), followed by subsets aggregated over a single step (M = .08, SD = .09) and
then subsets aggregated over an individual (M = .09, SD = .07). The number of events
that PPE predicted over was also found to affect the average residual, across all three
levels of aggregation, finding that its most accurate predictions occurred when it had
calibrated up to the second to last event predicting the performance on a subset’s final
event and its accuracy decreased as the number of events PPE predicted over increased.
Results show that when calibrating to all available historical events in a subset, PPE
can generate a more accurate prediction of future performance, though its accuracy in
part depends on the level of aggregation of the data it is predicting over.

Fig. 4. Shows the average RMSD, ± one standard deviation (SD) of the prediction period as a
function of the number of events calibrated to, across the three levels of aggregation.
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5 Discussion

The goal of this study was to perform an exploratory analysis on datasets available on
DataShop to implement PPE using the calibration update method across different levels
of aggregation, examining its ability to both fit and predict the performance of different
subsets. During the calibration period, the level of aggregation and the number of
calibration events both affected PPE’s overall fit to a subset’s initial performance.
The PPE calibrated to subsets aggregated over multiple or single steps better than
subsets which were aggregated over of an individual, as measured by the average R2

and RMSD values of the calibration period. The effect the level of aggregation had on
the calibration period is understandable due to the noise within a sample being
decreased when a subset’s performance is averaged over multiple individuals and steps;
it is the statistical smoothing benefit of the law of large numbers.

The number of events to which PPE calibrated also affected its ability to fit the
initial performance of a subset, decreasing the R2 and increasing the RMSD with each
additional event calibrated to. When PPE calibrates to the initial performance of a
subset, it attempts to minimize the RMSD between the subset’s initial performance and
PPE’s calibration, by manipulating its three free parameters. As PPE repeatedly cali-
brates to additional events within a subset, it must attempt to minimize the RMSD
between more events, which may not all clearly fall along a best fit line. This pattern of
results was seen across each level of aggregation showing that as PPE calibrates to
additional events, it loses some of its ability to fit the initial performance of a subset.

Although as PPE calibrated to additional events its ability to fit a subset’s per-
formance decreased, the opposite results were seen during the prediction portion. As
the number of events PPE calibrated to increased, so did its overall ability to predict the
performance of future events across all three levels of aggregation. The only exception
to this trend was observed in subsets aggregated over multiple steps comprised of nine
events. This group of subsets was comprised of a higher proportion of steps which
learners showed no improvement on, over the period of time they were observed,

Fig. 5. The average absolute value of the residual between the PPE’s predictions and a subset’s
performance on their last event as a function of the number of events predicting over, across all
three levels of aggregation.
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which lead to inconsistent and overall little improvement in their aggregate perfor-
mance. The combination of inconsistent improvement and a small overall learning that
was seen in the performance of these subsets affected the R2 of the prediction portion.
However, the RMSD of the prediction portion of these subsets did not increase as PPE
continued to calibrate to additional events, suggesting that PPE was not able to predict
the variability in their performance, though it was able to capture the overall trend in
the performance of these subsets.

The accuracy of PPE’s predictions of performance on a single event were also
found to depend on the subset’s level of aggregation. The PPE’s most accurate pre-
dictions were made when predicting subsets aggregated over multiple steps; its accu-
racy decreased when predicting subsets aggregated over a single step or individual.
Across all three levels of aggregation, predictions of performance of a single event
were most accurate when PPE calibrated to all but one of the events within a subset and
predicted the performance on its final event and its accuracy decreased as the number of
events it predicted over increased. The results from both the accuracy of PPE pre-
dictions of a single event, the R2, and RMSD of the prediction period suggest that by
calibrating to additional events, PPE can better predict the future performance of a
subset, despite the decrease in its ability to calibrate to the additional instances of a
subset’s initial performance.

The results obtained from using PPE on the datasets collected from DataShop shed
light on two points for our prediction performance research. The first was, across each
level of aggregation, PPE’s predictions were overall improved by continually cali-
brating to additional events, in order to update its predictions. The second was, that the
accuracy of PPE’s predictions were able to be examined across three different levels of
aggregation, which were seen to affect the accuracy of its predictions. If mathematical
models of learning are to be implemented in learning management systems developed
to help improve the rate or quality of training and education that specific individuals
receive, it is not enough for them to be able account for a sample’s aggregate per-
formance, but the performance at lower levels of aggregation, such as the performance
of an individual on a single task or the individuals within a sample, need to be able to
be accounted for as well. One way to account for the inherent variability in the
performance seen in data at low levels of granularity is to include prediction intervals in
addition to making quantitative point predictions of future performance. Prediction
intervals would allow PPE to predict a range that future performance might fall within,
depending on both the granularity of the data and time period predicting over, two
factors which were seen to affect PPE’s predictions. Jastrzembski et al. [6] have pre-
viously addressed the need for incorporating prediction intervals into PPE. The results
reported here show the additional benefit that prediction intervals could add, by being
able to address the uncertainty seen in the performance at low levels of aggregation.

In conclusion, the data collected from DataShop allowed for a large scale explor-
atory analysis to examine the utility of implementing PPE using the calibration update
method. Datasets with a record of each individuals’ performance at the individual-step
level allowed for a far more in depth analysis of PPE’s predictions, which archival
aggregate sample data from the published literature would not have allowed for. We
hope that others will use this case study as an example of how DataShop’s public
database can be used as a source of data from applied domains and will take advantage
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of the data being available at a such a fine level of granularity to improve other
mathematical models of learning, so that they may find real world application.
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