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Abstract. Recently, Davidson and his colleagues introduced a promising new
approach to analyzing functional Magnetic Resonance Imaging (fMRI) that
suggested a more appropriate analytic approach is one that views the spatial and
temporal activation as a multi-way tensor [1]. In this paper, we illustrate how the
use of prior domain knowledge might be incorporated into the deconstruction of
the tensor so as to increase analytical reliability. These results will be discussed
in reference to implications towards military selection and classification.
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1 Introduction

In a series of papers, Davidson and his colleagues [1-4] recently introduced a prom-
ising new approach to analyzing functional connectivity that views the spatial and
temporal activation as a multi-way tensor. The authors argued that such approaches
may pave the way for new and innovative improvements across military domains. For
example, the graph analytic approaches were applied to problems ranging from ana-
lyzing neuroimaging data to exploring the cause and effect relationships behind event
networks.

Similarly, their approach to viewing multi-way data as a tensor, promises a number
of different innovative opportunities across military domains. For example, many of the
DoD services have begun to investigate the use of neuroimaging modalities for
selection and classification [5, 6]. In addition, there has been tremendous interest in the
use of using specific neuroimaging techniques to examine mental health issues
including Traumatic Brain Injury (TBI) and Post-Traumatic Stress Disorder (PTSD)
[7]. One such technique, functional Magnetic Resonance Imaging (fMRI), will be
discussed in this paper.
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fMRI provides the unique opportunity to visualize neural activity in the brain in
real time. Perhaps one of the most promising applications of fMRI data has been on the
analysis of functional connectivity [8]. The term functional connectivity has come to be
understood as the temporal correlation of neuronal activation for spatially discrete
locations. The excitement over this analytic approach is due, in part, to the applicability
of these findings in both clinical and diagnostic settings [9].

The theoretical and practical advantages of several of the benchmark analytic
approaches are well known [10]. For example, innovations in clustering such as
spectral partitioning (SP) allows for the aggregation of several images to form a
composite pattern with a single global minimum which can be approximated efficiently
via a generalized eigenvalue problem and has been applied to fMRI clustering with
promising results [11].

However, limitations in the applicability and interpretability of the results from
fMRI following SP have been largely ignored. Specifically, SP and its specific use
toward fMRI have been challenged with respect to test/retest reliability. For example, a
review by Bennett and Miller [12] reported a mean Intra-class Correlation Coefficient
(ICC) from 13 separate studies to be ICC = .50. However, the ICC appeared to vary
widely depending on a number of different factors including scanner characteristics
(magnet strength; signal-to-noise ratio), subject-specific (cognitive state), and/or
task-specific (training effects). Depending on any number of these factors, the ICC
ranged between .88 and .16.

The primary aim of this paper is to outline an approach to analyzing functional
connectivity that overcomes many of the limitations of current data analytic approa-
ches. Specifically, this paper demonstrates an increase in reliability over and above
benchmark analytic approaches through the use of a technique we have termed
Constrained Tensor Decomposition (hereafter, CTD). CTD attempts to transfer
knowledge from existing domain knowledge (i.e., anatomical regions) to assist in the
clustering/segmentation process thereby creating more stable fMRI images. In doing
so, we show that we are more readily able to dissociate findings from different pop-
ulations of scans. To accomplish this, we apply a form of spectral clustering to two
separate TMRI scans. Unlike traditional clustering algorithms such as Independent
Components Analysis, and/or Principle Components Analysis that attempt to segment a
graph based on a single image, our approach incorporates knowledge from multiple
graphs that might share the same set of nodes with the first graph, but have a different
set of edges. Intuitively, the extra knowledge from the second graph may help to find a
better partition than the one we can find with the first graph alone.

The lack of test/retest reliability through the use of SP is illustrated in Fig. 1. This
figure shows SP results for two resting state fMRI data sets of the same healthy young
individual, acquired in short succession on an MRI machine. Barring a major medical
event between the two scans, the spatial and temporal patterns of resting state activity
should largely be the same. Yet, the spectral partitioning of the two data sets has little in
common despite the algorithm finding the global minimum of its objective function.
This suggests that the clustering resulting from spectral partitioning are strongly
influenced by random “noise” (i.e., MRI scanner noise) that have little to do with the
true similarity of the time course of brain activity.
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Fig. 1 Lack of test-retest reliability of spectral partitioning. A healthy young individual received
two fMRI scans in rapid succession. The top and bottom rows show the three top-ranked spectral
partitions of a corresponding slice from the first and second scans. Voxels more strongly
associated with one partition, vs. the other, are shown in lighter vs. darker shades, respectively.

Our approach, CTD, offers significant improvements over previous attempts at
measuring brain connectivity [13]. The aim of our work was the design of algorithms
that can take event data in the form of activations over a three-dimensional spatial
region x, y, z, over time ¢ and simplify that data into a network [14]. This involves both
aggregation so that the active cohesive regions (nodes) are identified and the formation
of relationships (edges) between these regions. The edges and their weights can then be
used to indicate properties such as information flow, excitation/inhibition or probabi-
listic relationships.

2 Constrained Tensor Decomposition

We view fMRI data as containing a complex interaction of signals and noise [14, 15]
with a natural question being how to simplify the activity into the underlying cognitive
network being used. Let y (2D space x time) be a three-mode tensor representing the
fMRI data for a mid-level slice of the brain. The aim of CTD is to decompose (sim-
plify) this tensor into f factors (¥ =y, + x%p--- + xf) using a PARAFAC model
(though more complex decompositions could be used). Let factor i be defined by the
outer product of three factor vectors (y; = aypbpt;) and for brevity we write
(z; = A-B-T) with the factor vectors being stacked column-wise so that each factor
matrix has f columns. Then y; can potentially represent a region of the brain with the
outer product of a; and b; being the active region and t; their activations over time.
However, with unconstrained tensor decomposition j; is typically not a spatially
contiguous region nor does it necessarily match an anatomical region. To achieve this,
guidance is introduced.

In the case of CTD, the objective function is complemented by adding constraints
(guidance) as shown in Eq. 1. The addition of guidance helps rule out solutions that are
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non-actionable by restricting them to be consistent with known domain knowledge and
expectations. Specifically, we identified 116 anatomical regions within a prototype
scan. These groupings of voxels were defined by a matrix/mask with all given matrices
being Q;...0,,.- Examples of the Q matrices used in this work can be seen in Fig. 2
with one matrix for each anatomical region. However, most anatomical networks will
only consist of a small number of nodes so we wish to use only a subset of Q matrices
in the decomposition. We can encode which structures/nodes/matrices are to be used
with a vector w with one component/entry per factor. We can represent how closely the
discovered factors match these matrices (allowing for some deviation) which is
upper-bounded by which is proportional to the number of voxels outside the given
group. The formulation for this process is presented in Eq. 1.

arg min x—ZWi,aiObiOfiHF+||W||
WAB,T 7
subject to wiaib] — Q1| < €

Wm”amb; - Qm” S em

The output of this computation will be the smallest set of groups/nodes (defined by
apb;) that best summarize the fMRI scan with t; stating the activations over time. The
penalty term ||w]|| introduces a sparsity constraint to enforce that the simplest structure
is discovered. Furthermore, by rank ordering the factors by their entry in w we can
determine the most important nodes in the network. Figure 2 shows an example of our
work where the Q matrices are just of the cores of a pre-defined anatomical network.
The top four most important nodes as per the w matrix and the corresponding
QO matrices are shown.

To illustrate the applicability of CTD over and above the benchmark analytic
techniques for network segmentation, we applied CTD to a series of scans from
resting-state fMRI. Typically, clustering from resting-state fMRI results in the seg-
mentation of a particular set of voxels known as the default mode network (DMN)
[16—18]. Further, this clustering, while reliably found in healthy populations, has has
been shown to be less clearly differentiated elderly populations, especially those with
Alzheimer’s Disease.

For the present work, we identified an exemplar scan whose clustering clearly
indicated the DMN as one of its clusters. We then applied CTD, using the exemplar
scan to demarcate regions of interest, to partition groups of scans including young and
elderly individuals. Using this technique, we will illustrate a boost in intra-individual
reliability (clustering across scans), by showing greater differentiation between different
populations.

! Unconstrained tensor decomposition results have been shown to be relatively poor for fMRI data
since, many spatially adjacent voxels in the same structure are not always active in the same factor.
Pre-processing the tensor by applying wavelets can alleviate this and could complement our work,
though in practice this pre-processing was time intensive and yielded only marginally better results.
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Fig. 2. Q matrices identified (a priori) as the top four nodes of the DMN amongst a possible
116 anatomical regions.

3 Empirical Results

Here, we used CTD to boost the reliability of intra-individual fMRI clustering and
provide a new approach for assessing inter-individual clustering commonalities at a
population level [3]. CTD uses an efficient generalized eigenvalue formulation to find a
2-category clustering of voxels such that voxels within the one cluster have highly
similar time series. But at the same time, CTD attempts to satisfy user-provided
guidance about which voxels should and should not cluster together. In this case,
guidance took the form of the identification of 116 known anatomical regions used to
constrain CTD to cluster a target scan. CTD provides a cluster quality metric that
quantifies how difficult it was to provide a high-quality clustering of the target that is
similar to that of the exemplar; we use this metric as a clustering metric between the
groups. In our experiments, we summarize an entire population of fMRI scans in terms
of clustering distance from an exemplar; however, we note that the clustering distance
between any pair of scans can be quantified by applying CTD, thus providing a
fine-grained assessment of the clustering quality between populations.

To illustrate the robustness of our approach, CTD was compared directly to the
results of clustering using one of the benchmark analytic approaches, Independent
Components Analysis (ICA) [19, 20]. ICA has widely been used across several resting
and functional imaging paradigms. Independent component analysis attempts to sep-
arate independent “sources” of data by identifying different factors. These factors then,
can be used to assess different levels of functional connectivity across populations.

In contrast, CTD attempts to take imaging data in the form of activations over a
three dimensional spatial region, x, y, z over time ¢ and simplify that activation into a
network. Previously, we illustrated how this can be accomplished so that active
cohesive regions (nodes) can be identified along with the formation of relationships
(edges) between those regions [2]. Here, we focus more on the use of CTD to boost
intra-individual clustering across scans.

We used real resting-state fMRI scans of normal and demented elderly individuals
to demonstrate the advantages of CTD over ICA. A particular set of voxels, referred to
as the default mode network (DMN), is known to generate highly similar time series in
fMRI scans of healthy individuals, and the tightness of this clustering is known to be
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decreased in individuals with Alzheimer’s disease [16]. Therefore, we analyzed the
functional scans of 8 normal elderly and 8 demented participants. We used CTD to
partition target scans including elderly and demented individuals based on constraints
derived from the anatomical boundaries.

We present experimental results on fMRI data of eight healthy (Elderly), eight
individuals with Mild Cognitive Impairment (MCI), and eight demented (Alzheimer’s)
individuals at rest. Each individual had been interviewed and measured using a series
of cognitive tests to measure Episodic, Executive, Semantic and Spatial scores
(whose range is from -2.5 to +2.5) and were categorized as Normal or having full-set
Alzheimer’s (Demented). When at rest state, an individual’s brain activity exhibits the
DMN in some form and in various degrees in all people. In normal individuals, the
DMN is expected to be fully intact and well exhibited. However, for demented indi-
viduals the DMN may be only partially formed and the signal may be ery weak. These
insights are well known and extensively published in the literature [16, 17] and we
expect our method to be able to verify these results. The ability to determine the strength
of the DMN from the scan is then akin to being able to predict the progression of
Alzheimer’s which we show is possible by predicting the cognitive scores (see below).

As can be clearly seen in Fig. 3 above, the use of SP was not sufficient in differ-
entiating between the three populations of scans. However, through the use of CTD, we
showed a differentiation in network quality between Elderly, MCI, and Demented. In
other words, we show that the intra-individual reliability of CTD is greater than that of
ICA. We also show that, as expected, the clustering metric (quality of cuts) between the
healthy elderly individuals is less than that between the exemplar and demented elderly
individuals, while there is no such significant difference for the analogous SP cluster
quality metric. Finally, we show that this group difference between healthy and
demented elders is robust across a range of constraint set sizes.

To provide convergence with the results presented above, we provided our algo-
rithm with all 116 anatomical regions/masks of the brain encoded each in its own
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Fig. 3. SP and CTD partition cost differences. As can be seen, ICA (left) fails to differentiate
clustering between different populations. However, the use of CTD (right) allows for clearer
differentiation between Elderly and MCI and Demented.
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Q matrix and performed a tensor decomposition and selected the top four factors
(according to the w vector) to determine which nodes/structures were active in the brain
during the scan. Table 1 (columns 2 and 3) shows the fraction of the various
nodes/parts of the DMN found for Normal and Demented people in the top four factors.

Here, we clearly see that the DMN is completely discovered in seven out of the
eight Elderly individuals with the eighth individual’s prefrontal region being ranked
fifth according to w. However, for the Demented group, the DMN is found in its
entirety in only two of the eight patients. In other words, our approach clearly differ-
entiated the signal strength between Elderly and Demented in terms of identifying
specific brain regions associated with the DMN.

Figure 4 (top) shows the actual network reconstructed from the top four factors for
the majority of the Elderly group. However, as can be seen in Fig. 4 (bottom), CTD
was not able to recover the DMN for the majority of participants in the Demented
group. This finding suggests, consistent with previous findings, that dementia has
resulted in network activation that is less clearly organized and therefore does not
preserve the DMN.

Table 1. Mean Pearson correlation for demented individuals for top four nodes of a network
discovered for each individual. The nodes/structures denoted by * are part of the DMN.

Elderly Demented
Prefrontal Region 88 % 50 %
Posterior Cingulate 100 % 63 %
Inferior Parietal 100 % 38 %
Medial Temporal 100 % 25 %
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Networks discovered using CTD and the top four factors for Elderly
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Networks discovered using CTD and the top four factors for Demented

Fig. 4. Networks reconstructed using the top four factors from FElderly (top) and Demented
individuals.

4 Discussion

The primary aim of this paper was to introduce a new method for image segmentation
of fMRI data. Specifically, we showed how the use of Constrained Tensor Decom-
position could be used to better differentiate three different populations of scans. Here,
we showed how this data-driven approach can utilize previous domain knowledge to
increase the overall validity of the results.
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The widespread use of neuroimaging data has warranted the need for the devel-
opment of new and innovative techniques that analyze the data with a specific focus
towards incorporating domain knowledge. Here, we showed how the use of CTD can
be used by incorporating domain knowledge on an a priori basis to drive the data
towards answering specific questions. Using this type of technique, we believe new
opportunities in areas such as military selection and classification will develop.
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