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Abstract. Eye blinks and other ocular artifacts represent a dominant
source of EEG signal interference, especially in frontal EEG electrodes.
Even though there are several widely accepted methods for the removal
eye-blinks, (e.g. linear filtering and ICA), it is still a difficult problem
to address when the number of EEG electrodes are limited (as is the
case for EEG systems designed for everyday application contexts), and
dedicating a subset of these for monitoring eye activity is impractical.
In this paper, we propose a novel and general method to eliminate the
ocular artifacts based on a combination of filter banks and an eye tracker.
This approach offers the promise of making non-intrusive, efficient, and
robust ocular artifact detection and correction a tractable prospect.
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1 Introduction

Accurate estimation of mental workload is a capability of considerable theo-
retical and practical interest. Applications include estimating learning efficiency,
assessing cognitive deficiencies, and serving as the basis for adapting human com-
puter interfaces [1,2]. Inferences of cognitive load are typically made by assessing
task performance related metrics, behavioral actions and measurement of vari-
ous physiological signals like eye activity, heart rate or electroencephalography
(EEG). EEG, as a measure of ongoing cortical activity, offers the prospect of
direct, quantitative assessment of workload. However these signals can be com-
promised by artifacts and interferences, consequently decreasing the robustness
and reliability of the estimation of the cognitive state. In particular, cognitive
tasks requiring eye movements increase the likelihood of ocular artifacts. Eye
blinks constitute one of the most prominent artifact sources due to their rel-
atively large amplitude in EEG compared to the neural activity. Even though
the removal of ocular artifacts has been widely addressed [3–7], effective filtering
when only a low number of EEG electrodes are available, and when a dedi-
cated electrooculogram (EOG) impractical, is still an important and interesting
problem.

In this paper, we address the problem of the correction of ocular artifacts
in EEG using filter banks, with the joint utilization of an eye tracker as the
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basis for accurate and robust correction of eye artifacts. Reliance on a combi-
nation of EEG, and eye tracker data requires an additional consideration of the
synchronization of the signals, which is typically underestimated or ignored in
the literature. Therefore, we first illustrate the importance of the signal syn-
chronization and demonstrate a procedure to achieve event matching and signal
resampling. Consequently, we introduce a filter bank based artifact removal,
which is the main novelty of this paper. Even though the proposed methodology
is specifically designed for the removal of (EOG) artifacts, these methods are
generalizable to other artifact sources with sufficient ease.

2 Methods

2.1 Signal Synchronization

For the joint utilization of two or more independently recorded discrete signal
sources, it is imperative to synchronize the corresponding sample times. This
importance is primarily a consequence of the slight differences between actual
sampling rates and nominal sampling rates. These small discrepencies stem from
the practicality of the recording hardware or rounded reporting of the nominal
sampling rates. For example, the characteristics of oscillators used for analog to
digital conversion in most recording equipment depends on temperature, causing
slight deviations from the tuning frequency. Even the slightest difference between
the nominal and actual sampling rates might become relatively significant over
the span of minutes. To illustrate this phenomenon, let T , fn and fs be the
recording duration, nominal sampling rate and actual sampling rate, respectively.
Corresponding time difference introduced at the end of the recording due to the
sampling rate difference becomes,

Δt = T
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∣
∣
∣
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For T = 20 min, fs = 59.99 Hz and fn = 60 Hz, Δt becomes 200 ms, which
might be extremely significant for a psychological experiment or for time-locked
EEG analysis. Additionally, some of the recording equipment might contain dis-
continuities due to data losses or exclusions, which contributes further to signal
synchronization problems. For example, an eye tracker may stop recording after
prolonged durations of looking away.

Event Matching. Event synchronization between the recording equipments
can be addressed by utilization of shared hardware triggers. The experimental
stimulus or task computer may send simultaneous trigger events to all devices.
To align the independently recorded triggers, common event sequences may be
matched iteratively, starting from the longest one and removing the matched
event sequences. This longest event sequence matching may be solved by the
longest common substring problem [8,9], which can be solved in linear time.
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Such an event matching approach is only applicable when the event triggers do
not contain many repeated sequences.

Following is a high-level operational overview of the simple event match-
ing algorithm, which separates events to blocks according to the matching of
the event sequences. Let ek,m, nk,m represent the event label and position pair
corresponding to mth event for recording device k,

1. For block v, starting from v = 0
2. Find the longest common sequence sv,0, sv,1, sv,2, · · · , sv,Lv−1 over the event

labels, where sv,0 corresponds to the event pair of ek,mk,v
, nk,mk,v

for each
device k.

3. Remove the event sequence block from the event sequences corresponding to
each device.

4. v = v + 1

It is worthwhile to note that if there are no event or data losses, the longest
common sequence would correspond to the sequence of all the events.

Resampling. Bringing signals to a common sampling rate might be necessary
for some signal processing applications. In particular, most adaptive filtering
algorithms, e.g. least mean squares (LMS), recursive least squares (RLS) [10],
typically expect signals to have identical sampling rates. Even though sample-
rate conversion is well-known in discrete time signal processing [11,12], the con-
sideration of the variations from the nominal sampling rates, as indicated in
Sect. 2.1, requires additional consideration for their match. Changing the sam-
pling rate by a rational factor, R = L

M , may be achieved using the system
depicted in Fig. 1, where ↑ K and ↓ K represents upsampling and downsampling
by a factor of K, respectively.

Fig. 1. The system for changing the sampling rate by a factor of R = L
M

One of the recording devices is designated as the master device for the pur-
pose of resampling. Correspondingly, a rational common sampling rate is selected
relative to the nominal sampling rate of the master device.

For the sake of simplicity, let device 0 be selected as the master device with
fn,0 as the corresponding nominal sampling rate, and fc be the common target
nominal sampling rate. Subsequently, the sampling rate of device k relative to
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the master device in block v may be estimated utilizing the matched events
according to

Rfk,v =
nk,mk,v+Lv−1 − nk,mk,v

n0,m0,v+Lv−1 − n0,m0,v

. (1)

Consequently, the corresponding resampling rate becomes,

Rk,v = Rfk,v × fc
fn,0

. (2)

Accordingly, the signals from device k are resampled by a factor of Rk,v for block
v (using the resampling system depicted in Fig. 1) to obtain signals synchronized
across devices with a nominal sampling rate of fc. In the following sections, the
signals are going to be assumed to have been synchronized.

Fig. 2. A demonstration of the ambiguity of the high frequency components. An analog
step signal, discrete signal obtained by sampling at 64 Hz and resampled signal obtained
by resampling the discrete signal to 512 Hz are all equal at the sampling points.

It is worth noting that the signal synchronization process depicted in this
section might have some limitations depending on the content of the signals and
events. Expectedly, decreasing the sampling rate would cause high frequency
components to be lost. Therefore, if there are signals of interest at high frequen-
cies relative to the corresponding Nyquist rate, the nominal common sampling
rate should be set to be sufficiently high. As further consideration, discrete sig-
nals do not contain any additional information on their analog counterparts.
Typically an anti-aliasing filter is applied prior to analog-to-digital conversion,
removing the high frequency components in the analog signal enabling a perfect
reconstruction. However, in some contexts, the analog signal might be discontin-
uous, e.g. step function, correspondingly the resampled signal would be distorted,
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since signal is assumed to have zero power beyond the Nyquist frequency. An
example of this phenomenon is given in Fig. 2. If this is not the intended behavior
for the signals from one of the recording devices, common sampling rate may be
selected to be equal to the nominal sampling rate of the corresponding record-
ing device to prevent resampling. Alternatively, if there is more than one such
pieces of recording equipment, a specialized resampling method utilizing addi-
tional information on the nature of the analog counterpart may be implemented
to mitigate the ambiguity of the content beyond the Nyquist frequency.

For the joint utilization of EEG and eye-tracker, the discontinuity mentioned
above becomes a matter of concern. When the eye is closed, e.g. during eye
blinks, the gaze position or the pupil diameter become untracked for a brief
duration. Consequently, the signal is expected to be discontinuous at the time of
eye closure or opening. Therefore if the signal of interest in the EEG is negligible
beyond the Nyquist rate of the eye tracker, selecting the sampling rate of the
eye tracker as the common one would be a reasonable choice. Although the
event matching and estimation of the relative sampling rates are sufficient for
the algorithm proposed in this paper, we still explored resampling, with the goal
of fostering generalizability of the filtering approaches described here.

2.2 Removal of EOG Artifacts

EOG artifacts are typically generated as a consequence of the charge difference
caused by the friction of the eyeball during its rotation in the orbit of the eye.
Predominantly affecting frontal sites in the EEG, they tend to be relatively large
in amplitude compared to the neural activity. Therefore, removal of the EOG
artifacts becomes essential for effective brain computer interfaces or cognitive
analyses. However, some experimental task paradigms employed might be par-
ticularly susceptible to ocular artifacts. For example, an experiment requiring
the participant to look at flashing objects at different positions on the monitor
may cause considerable ocular interference in the EEG.

In the literature, the methods typically utilized for the removal of ocular arti-
facts are band-pass filtering, independent component analysis (ICA), principal
component analysis (PCA), linear regression and adaptive filtering [4]. These
approaches have limitations. For example, since most ocular artifacts tend to be
in the lower frequencies, applying a high pass filter may be a useful approach for
filtering out artifacts with low impact on the broader EEG spectrum. The main
limitation of such a filtering approach is that it is relatively coarse, introducing
the possibility of filtering our cortical signals, and leaving residual artifact activ-
ity. ICA has been used as a filtering approach as a response to shortcomings
associated with high pass filters. Even though ICA or other blind source sepa-
ration methods are usually effective on identifying eye blinks as an independent
source in the EEG without requiring any EOG electrodes or any other external
source of indicators, they typically require a high number of EEG channels and
manual identification of the interference sources. Moreover, the assumptions of
independence and non-Gaussianity in ICA might possibly conflict with the sig-
nals of interest or need a substantially large amount of data to be able to identify
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the sources [5]. PCA based approaches to artifact corrections have limitations
as well. In its characteristic application, PCA maps EEG channels to spatially
uncorrelated components. Therefore, PCA inevitably fails to preserve signals of
interest occurring in frontal lobes. Linear regression analysis, another commonly
used approach to artifact reduction, is typically applied either assuming a pro-
portional propagation of eye activity (measured using EOG sensors placed close
to the eye) to EEG channels or matching pre-built templates representing the
form of eye blinks. However the variations in the eyeblink shape and possibility
of nonlinear progression of eye blinks through scalp limits the effectiveness of
regression approaches. Moreover, EOG sensors also pick up neurological activity
from frontal lobe. Finally, linear adaptive filters are typically applied with the
cost function of minimization of EEG activity, causing possible removal of signal
of interest. Additionally, most of the limitations noted for linear regression also
apply to linear adaptive filtering.

Fig. 3. The representation of filter bank analysis and synthesis. hb and gb represent
the FIR filter to extract bth frequency sub-band and the corresponding perfect recon-
struction filter, respectively.

In this paper, we describe an alternative approach for artifact removal uti-
lizing filter banks and a gating mechanism. Filter banks are an array of filters
designed to decompose the signal into different components [12–14]. Although
it is possible to utilize the filter banks with various types of systems, each bank
is an FIR filter decomposing the signal into frequency sub-bands in the typical
application, e.g. graphical equalizers. With a careful consideration on the design
of the decomposition and reconstruction filters, it is possible to achieve perfect
reconstruction [15]. Correspondingly, we decompose each EEG channel, xc[n]
to their frequency sub-bands using filter banks with the perfect reconstruction
property as in Fig. 3. As a special selection of such filters, we select h1 to cor-
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respond to a low pass filter designed in the least square sense [16] and hb to
correspond to frequency shifts of h1.

Following the decomposition (analysis) step of the filter bank, xc,b[n] repre-
senting the EEG component for channel c and frequency sub-band b is obtained.
Using an independent measure of artifact contamination, the temporal sections
of artifacts are identified. In this paper, artifact indicator signal corresponds to
eye blinks detected from an eye tracker. In non-contaminated sections, the sta-
tistics for each channel and band are learned, and in contaminated sections, the
samples outside the tolerance interval of the learned statistics are removed.

The learning procedure for a single sub-band is as the following, where o[n]
represents a binary signal indicating the existence of artifacts:

1. Decompose each EEG channel into frequency sub-bands with a filter bank
2. ∀ sub-band signal xc,b[n] for channel c and band b and ∀n

(a) If o[n] = 0, indicating non-contamination by artifacts, use xc,b[n] to
estimate second order statistics of the corresponding channel and band,
σc,b.

(b) If o[n] = 1, indicating contamination, and |xc,b[n]| > τσc,b, set xc,b = 0
(τ = 3)

3. Reconstruct the EEG channels, x̂c[n], from modified sub-band signals, xc,b[n]

3 Experimental Setup and Results

EEG and eye-tracker data utilized in this paper were recorded from a series of
experiments designed to vary cognitive load during a set of visual psychological
tasks. For most of the tasks, participants are expected to direct their gaze to var-
ious spatial elements in order to match colors, perform an n-back task and follow
directional cues. Correspondingly, the nature of the tasks require frequent eye
movements causing ocular artifacts in the EEG. Moreover, the most prominent
components of neurophysiological activity associated with the task manipulation
is expected to occur in the prefrontal cortex, which is one of the most susceptible
regions to ocular artifacts.

During the sessions, EEG is acquired from a 64 channel Biosemi ActiveTwo
system with the sampling rate of 256 Hz. Concurrently, pupil diameter, horizon-
tal and vertical eye positions are recorded using an ASL EYE-TRAC 6 Series eye
tracker (sampling rate: 120 Hz). Event triggers are sent to both devices through
parallel port. Following an application of a linear phase high pass filter (cut-off:
1 Hz, length: 480) on the EEG to remove the low frequency drifts, the signals
are synchronized and resampled to 120 Hz (sampling rate of the eye tracker).
Eye tracker signals contain discontinuities due to the loss of tracking during the
closure of eyes, and the selection of 120 Hz as the common sampling rate pre-
vents distortions in the signals caused by the antialiasing filters in the resampling
operation.

Using the vertical eye position from the eye tracker, eye blinks are detected
via a simple thresholding on the vertical speed. A filter bank, consisting of 30 FIR
filters (length 480) with 4 Hz intervals, is designed with the perfect reconstruction
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property. Consequently, each EEG channel is passed through the filter bank and
ocular artifacts are removed utilizing the proposed algorithm. Examples of the
artifact removal for channel Fp1 are given in Fig. 4.

Fig. 4. Examples of artifact removal for Fp1. Proposed algorithm was also successful
on effectively eliminating ocular artifacts with sporadic waveforms as in Example 4.

4 Discussion

In this paper, we demonstrated a novel methodology to filter ocular artifacts
from EEG. Our approach employed filter banks in conjunction with an eye
tracker based eye activity detector. The frequency sub-bands which change signif-
icantly compared to typical signal levels are removed from the temporal sections
detected to be contaminated. Even though we have focused on the eye blinks in
this paper, a similar methodology is applicable for other artifact sources or detec-
tors with minor changes to this approach. For example, an accelerometer based
detector may be used to remove artifacts caused by extraneous movements, or a
dedicated EOG channel may be utilized for ocular artifacts. However, if different
pieces of recording equipment are used as artifact detectors, a signal synchro-
nization step, as described in Sect. 2.1, becomes imperative for alignment with
EEG signals.
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One of the advantages of the artifact filtering algorithm presented in this
paper is that it works with a very low number of EEG channels. EEG sys-
tems with a small number of electrodes are becoming increasingly popular, as
researchers begin to apply EEG-based solutions in a variety of practical tasks
contexts.

While promising as an efficient and effective technique, there are several
concerns associated with the proposed algorithm. First, it requires an external
eye blink/artifact detector. However, widening availability of eye trackers and
camera-based interaction systems (e.g. Xbox Kinect) creates a significant poten-
tial for detection of eye blink and artifact inducing events. As an alternative
solution, when a camera-based detector is impractical, the difference between
two frontal EEG channels with the same horizontal position may be used as an
eye blink detector. Second, if the frequency content signals of interest notably
overlaps with the eye blinks or changes frequently, the proposed approach may
be unable to remove the artifacts without distorting the EEG.

It is possible to improve and extend the proposed algorithm in various ways.
For example, setting the contaminated frequency components to zero introduces
distortions at the beginning and at the end of the contaminated section. Corre-
spondingly, a smoother transition may be achieved utilizing a window function to
decrease the aggressiveness of the removal at the edges. Moreover, the detection
of the level of contamination may be measured in a more probabilistic manner,
as opposed to simply thresholding based on the second order statistics. Such an
approach may also be used to decide on the degree of correction of contaminated
samples. Furthermore, the learned statistics of the frequency sub-band may be
time variant, e.g. estimated adaptively using a forgetting factor, to adapt for
slow variations in the signal characteristics. Another possible track of enhance-
ment is to utilize filter banks in a multidimensional manner with multiple EEG
channels.
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