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Equational reasoning about quantum protocols.

Simon J. Gay1 and Ittoop V. Puthoor1,2 ?
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Abstract. Communicating Quantum Processes (CQP) is a quantum
process calculus that applies formal techniques from classical computer
science to concurrent and communicating systems that combine quan-
tum and classical computation. By employing the theory of behavioural
equivalence between processes, it is possible to verify the correctness of a
system in CQP. The equational theory of CQP helps us to analyse quan-
tum systems by reducing the need to explicitly construct bisimulation
relations. We add three new equational axioms to the existing equational
theory of CQP, which helps us to analyse various quantum protocols by
proving that the implementation and specification are equivalent. We
summarise the necessary theory and demonstrate its application in the
analysis of quantum secret sharing. Also, we illustrate the approach by
verifying other interesting and important practical quantum protocols
such as superdense coding, quantum error correction and remote CNOT.

Keywords: Quantum Computing, Formal methods, Quantum process
calculus, Verification, Operational semantics, Equational reasoning

1 Introduction

Quantum computing is believed to be the next computing revolution as it
promises to offer a very high degree of improvement over its classical counterpart
by using the principles of quantum mechanics. On the other hand, quantum cryp-
tography and quantum communication have made rapid progress already with
the commercial deployment of the first secure cryptography systems [12, 13]. It
has been mathematically proven that quantum cryptographic systems are uncon-
ditionally secure [14] but this doesn’t provide a formal assurance to the security
when these systems are implemented as a whole unit which may also include
classical components. Therefore, there is still the need to develop techniques
that verify the correctness of these systems. This was the prime motivation of
using process calculus (a specialised area in formal methods) in modelling and
analysing quantum information processing (QIP) systems that can be imple-
mented.

Quantum process calcululi provide the techniques which help us to formally
define the structure and behaviour of systems that are a combination of both
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quantum and classical subsystems. We use a particular quantum process calculus
called Communicating Quantum Processes (CQP) [8], developed by Gay and Na-
garajan. The other quantum process calculus which has been established is qCCS
by Feng et al.[4]. The property of behavioural equivalence of processes in quan-
tum process calculus helps to verify the correctness of a system. The congruence
property of equivalence makes it more powerful by preserving the equivalence in
any environment. This has been developed for CQP [2] and qCCS [5].

Equational reasoning is essential in mathematics and logics, and plays an
important role in many applications of formal methods in theoretical computer
science. With the use of theorem provers for equational logic, it is possible to
perform automated analysis. The equational axioms reduce the need to explicitly
construct bisimulation relations, which is reported in [2] for CQP with an analysis
of the quantum teleportation protocol (Teleport).

Our Contributions. In this paper, we demonstrate the use of the equational the-
ory of CQP [2] and introduce three new axioms that helps us to take a step
further to analyse various quantum protocols that include: quantum secret shar-
ing (QSS ), superdense coding (SDC ), quantum error correction code (QECC )
and Remote CNOT (RCNOT ). Our results show that the protocols, QSS and
QECC are equivalent to the specification process Identity . We provide a similar
reasoning for other protocols. Using the transitivity property of equivalence, we
also prove that QSS -c QECC -c Teleport .

The structure of the paper is as follows. First, in Section 2 we provide in
brief the fundamentals of quantum computing. We review the language of CQP
in Section 3 and illustrate it with a model of quantum secret sharing. Section 4
provides a brief summary on the theory of behavioural equivalence of CQP.
Section 5 summarises the equational theory of CQP, which has not previously
been published other than in Davidson’s thesis, and applies it to quantum secret
sharing and other protocols. Section 6 concludes with an indication of directions
of future work.

Related Work. Previous work on automated analysis is based on exhaustive
simulation based on stabiliser formalism. Model checking tools like the QMC [10]
and the equivalence checker [1] were developed for the verification of quantum
protocols. Since the tool uses stabilizer formalism, it is restricted to use only the
operators in the Clifford group. The equational theory of CQP is not based on
the stabilizer formalism and hence is not restricted to Clifford group operations.

2 Preliminaries

We recall briefly the aspects of quantum computing that are relevant for this
paper. For more detailed information we refer to [16]. A qubit is an information
unit comprising two states (|0〉 and |1〉) which are called the standard basis. The
state space H (or Hilbert space) of a qubit is a vector space that consists of all
superpositions of the basis states: |ψ〉 = α|0〉+ β|1〉 where α and β are complex



amplitudes such that |α|2 + |β|2 = 1. The states can be represented by column
vectors: (

α
β

)
= α

(
1
0

)
+ β

(
0
1

)
= α|0〉+ β|1〉

A system can consist of many qubits (say n qubits) and the Hilbert space is
a 2n dimensional space whose standard basis is |00 . . . 0〉 . . . |11 . . . 1〉. This is
represented by tensor product of unit vectors which is denoted as |0〉⊗|0〉 · · ·⊗|0〉.
The evolution of the quantum state of a system can be described by quantum
operations called unitary transformations. If the state of a qubit is represented
by a column vector, then a unitary transformation is represented by a matrix.
Some unitary transformations which are commonly used are the Hadamard (H)
and the Pauli transformations, denoted by either I,X,Z,Y:

H = 1√
2

(
1 1
1 −1

)
, I =

(
1 0
0 1

)
,X =

(
0 1
1 0

)
,Y =

(
0 −i
i 0

)
,Z =

(
1 0
0 −1

)
The measurement operation changes the quantum state permanently and mea-
suring the above quantum state |ψ〉 gives a result 0 with probability |α|2 and
result 1 with probability |β|2. We will be using the controlled Not transformation
(or CNOT) on a pair of qubits. The action of this operation is that it flips the
second qubit (target qubit) if and only if the first qubit (control qubit) is 1. We
have CNOT|0x〉 = |0x〉 and CNOT|1x〉 = |1y〉 where x, y ∈ {0, 1} and y = x⊕ 1
with ⊕ denoting addition modulo 2. Entanglement is an important phenomenon
in quantum computing which is observed in a system that comprises of two or
more qubits. This means that the states of the qubits are not separable. For
example, a three qubit state 1√

2
(|000〉+ |111〉) (also called GHZ state) is said to

be entangled and cannot be decomposed into single qubit states. Measurement
of one of the qubits will fix the state of the others even if the entangled qubits
are physically separated.

3 Communicating Quantum Processes (CQP)

CQP is based on the π-calculus [15] with primitives for quantum information.
The language uses the concept that a system can be considered to be made
up of independent components or processes. The processes can communicate by
sending and receiving data along channels and these data are qubits, or classical
bits. A distinctive feature of CQP is its static type system [9], the purpose of
which is to classify classical and quantum data and also to enforce the no-cloning
property of quantum information. In our recent work, we have extended CQP
to describe and verify linear optical quantum computing (LOQC) [6, 7].

3.1 Syntax and semantics of CQP

The syntax of CQP is defined by the grammar as shown in Figure 1. We use
the notation ẽ = e1, . . . , en, and write |ẽ| for the length of a tuple. The syntax



T ::= Int | Qbit | Bit | [̂T̃ ] | Op(1) | Op(2) | · · ·
v ::= 0 | 1 | · · · | H | · · ·
e ::= v | measure ẽ | ẽ ∗= e | e+ e′ | (e, e)

P ::= 0 | (P |P ) | P + P | e?[x̃ : T̃ ].P | e![ẽ].P | {e}.P | (qbit x)P | (new x : [̂T ])P

(i)

v ::= . . . | q | c
E ::= [] | measure E, ẽ | measure v,E, ẽ | . . . | measure ṽ, E | E + e | v + E

F ::= []?[x̃].P | []![ẽ].P | v![[].ẽ].P | v![v, [], ẽ].P | · · · | v![ṽ, []].P | {[]}.P
(ii)

Fig. 1. (i) Syntax of CQP and (ii) Internal syntax of CQP.

consists of types T , values v, expressions e (including quantum measurements
and the conditional application of unitary operators ẽ ∗= e), and processes P .
Values v consist of variables (x,y,z etc), channel names c, literal values of data
types (0,1,..), unitary operators such as the Hadamard operator H. Expressions
e consist of values, measurements measure e1, . . . , en, applications e1, . . . , en ∗=e
of unitary operators and expressions involving data operators such as e+e′ and a
pair of values (e, e). Processes include the nil process 0, parallel composition P |P ,

inputs e?[x̃ : T̃ ].P , outputs e![ẽ].P , actions {e}.P (typically a unitary operation or

measurement), typed channel restriction (new x : [̂T̃ ])P and qubit declaration
(qbit x)P . In order to define the operational semantics we provide the internal
syntax in Figure 1(ii). We assume a countably infinite set of qubit names, ranging
over q, r, . . . and similarly channel names c. Values are supplemented with qubit
names q which are generated at run-time and substituted for the variables used
in qbit declaration. Evaluation contexts for expressions (E[]) and processes (F [])
are used to define the operational semantics [19].

The complete formal semantics are provided in [2] and we explain briefly in
this paper. In CQP, the execution of a system is described by the process term
(which is the case for classical process calculus) and the quantum state. Hence,
the operational semantics are defined using configurations.

Definition 1. A configuration is a tuple (σ;ω;P ) where σ is a mapping from
qubit names to the quantum state and ω is a list of qubit names associated with
the process P

The semantics of CQP consists of labelled transitions between configurations.
For example, the configuration ([q, r 7→ |ψ〉]; q; c![q] . P ), means that the global
quantum state consists of two qubits, q and r, in the specified state (|ψ〉); that
the process term under consideration has access to qubit q but not to qubit r ;
and that the process itself is c![q] . P .



Example 1. ([q, r 7→ |ψ〉]; q; c![q] . P )
c![q]−→ ([q, r 7→ |ψ〉]; ∅;P ).

The example illustrates an output transition where the quantum state (|ψ〉 =
1√
2
(|00〉 + |11〉) is not changed by this output transition. Since qubit q is given

as output, the continuation process P no longer has access to it; the final con-
figuration has an empty list of owned qubits.

3.2 Quantum Secret Sharing

In this paper, we describe a quantum secret sharing [11] protocol that consists
of three users represented by the processes: Alice, Bob and Charlie. Alice would
like to send a message to Bob and Charlie. We analyse a scenario in which
Charlie ends up with the original qubit. Alice encodes her message in a way
such that Bob and Charlie must cooperate with each other to retrieve it. The
protocol begins by applying a Hadamard and CNOT operations to qubits x, y
and z in order to generate the GHZ state as described in previous section. The
qubits are shared between the three users. Alice also possesses the qubit labelled
q which is in some unknown state |ψ〉; this is the qubit she wishes to send. The
CQP definitions of Alice, Bob and Charlie are as follows

Alice(c, e, x) = c?[q :Qbit] . {q, x ∗= CNOT} . {q ∗= H} . e![measure q,measure x] .0
Bob(f, y) = {y ∗= H} . f ![measure y] .0
Charlie(e, f, d, z) = e?[i :Bit, j :Bit] . f?[k :Bit] . {z ∗= Zk} . {z ∗= Xj} . {z ∗= Zi} .
d![z] .0

Alice receives the qubit q from the environment through her channel c and
performs unitary operations (CNOT and H) before measuring her qubits. She
sends the outcomes which are classical bits i and j through channel e to Charlie.
Charlie cannot retrieve the information without the help of Bob. Bob performs
an Hadamard operation on his qubit y before measuring it. Then, he sends
the outcome to Charlie. Using the classical bits from Alice and Bob, Charlie
performs the necessary unitary operations on his qubit z in order to recover the
original state |ψ〉. The complete system is defined as:

QSS (c, d) = (qbit x, y, z)({x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} .
(new e, f)(Alice(c, e, x) | Bob(f, y) | Charlie(e, f, d, z)))

QSS process consists of Alice, Bob and Charlie in parallel. That is the outputs
on e and f in Alice and Bob respectively synchronise with the inputs on e and
f in Charlie. Channel e and f are designated as a private local channels. This
is specified by (new e, f), which is a construct from pi-calculus to dynamically
create fresh channels. The first term, (qbit x, y, z) in QSS , allocates three fresh
qubits, each in state |0〉, and gives them the local names x, y and z. The next
three terms create the GHZ state with qubits x, y and z. The aim is to prove that
QSS is equivalent to its specification process given by the following definition:

Identity(c : [̂Qbit], d : [̂Qbit]) = c?[x :Qbit] . d![x] .0.



4 Probabilistic Branching Bisimulation of CQP

The equivalence for CQP is a form of probabilistic branching bisimilarity [18],
adapted to the situation in which probabilistic behaviour comes from quantum
measurement. A key point is that when considering matching of input or output
transitions involving qubits, it is the reduced density matrices of the transmitted
qubits that are required to be equal. Here, we summarise the essential definitions

in [2]. Let
τ−→

+
denote zero or one τ transitions; let =⇒ denote zero or more τ

transitions; and let
α

=⇒ be equivalent to =⇒ α−→=⇒.

Definition 2 (Probabilistic Branching Bisimulation). An equivalence re-
lation R on configurations is a probabilistic branching bisimulation on configu-
rations if whenever (s, t) ∈ R the following conditions are satisfied.

I. If s ∈ Sn and s
τ−→ s′ then ∃t′, t′′ such that t =⇒ t′

τ−→
+
t′′ with (s, t′) ∈ R

and (s′, t′′) ∈ R.

II. If s
c![V,q̃1]−→ s′ where s′ = �j∈{1...m}pjs

′
j and V = {ṽ1, . . . , ṽm} then ∃t′, t′′

such that t =⇒ t′
c![V,q̃2]−→ t′′ with

a) (s, t′) ∈ R,
b) t′′ = �j∈{1...m}pjt

′′
j ,

c) for each j ∈ {1, . . . ,m}, ρE(s′j) = ρE(t′′j ).
d) for each j ∈ {1, . . . ,m}, (s′j , t

′′
j ) ∈ R.

III. If s
c?[ṽ]−→ s′ then ∃t′, t′′ such that t =⇒ t′

c?[ṽ]−→ t′′ with (s, t′) ∈ R and
(s′, t′′) ∈ R.

IV. If s ∈ Sp then µ(s,D) = µ(t,D) for all classes D ∈ S/R.

Here, µ is the probabilistic function that is defined in the style of [18], which
is necessary when calculating the total probability of reaching a terminal state.
This is needed to ensure the matching of probabilistic configurations.

Definition 3 (Probabilistic Branching Bisimilarity). Configurations s and
t are probabilistic branching bisimilar, denoted s - t, if there exists a probabilis-
tic branching bisimulation R such that (s, t) ∈ R.

Definition 4 (Full probabilistic branching bisimilarity). Processes P and
Q are full probabilistic branching bisimilar, denoted P -c Q, if for all substitu-
tions κ and all quantum states σ, (σ; q̃;Pκ) - (σ; q̃;Qκ).

In order to state the congruence theorem, we need an assumption that processes
are typable. Due to space constraints, we have not presented the type system in
this paper but the idea is to associate each qubit with a unique owning compo-
nent of the process.

Theorem 1 (Full probabilistic branching bisimilarity is a congruence
[2]). If P -c Q then for any context C[], if C[P ] and C[Q] are typable then
C[P ] -c C[Q].



M |N = Σm
i=1αi.(Pi |N) +Σn

j=1βj .(M |Qj) +ΣαiCβj τ.(Pi |Qj) (E1)

where M = Σm
i=1αi.Pi, N = Σn

j=1αj .Qj and αiCβj if αi is c![ẽ] and βj is c?[x̃]

{x̃ ∗= V }.{x̃ ∗=W}.P = {x̃ ∗= U}.P if U = WV (Qi1)

{ỹ ∗= Umeasure x}.P = {x, ỹ ∗= CU}.{measure x}.P (Qi2)

{ỹ ∗= Umeasure x.measure z}.P = {(x, z), ỹ ∗= CU}.{measure x} . {measure z}.P (Qi3)

{x̃ ∗= U}.{ỹ ∗= V }.P = {ỹ ∗= V }.{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc1)

{x̃ ∗= U}.{measure ỹ}.P = {measure ỹ}.{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc2)

{x̃ ∗= U}.(qbit ỹ).P = (qbit ỹ).{x̃ ∗= U}.P if x̃ ∩ ỹ = ∅ (Qc3)

{measure x̃}.{measure ỹ}.P = {measure ỹ}.{measure x̃}.P if x̃ ∩ ỹ = ∅ (Qc4)

{measure x̃}.(qbit ỹ).P = (qbit ỹ).{measure x̃}.P if x̃ ∩ ỹ = ∅ (Qc5)

(qbit x̃).(qbit ỹ).P = (qbit ỹ).(qbit x̃).P if x̃ ∩ ỹ = ∅ (Qc6)

α.{ỹ ∗= U}.c?[x̃].P = α.c?[x̃].{ỹ ∗= U}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅ (Qc7)

α.{ỹ ∗= U}.c![x̃].P = α.c![x̃].{ỹ ∗= U}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅ (Qc8)

α.{measure ỹ}.c?[x̃].P = α.c?[x̃].{measure ỹ}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅ (Qc9)

α.{measure ỹ}.c![x̃].P = α.c![x̃].{measure ỹ}.P if ỹ ⊆ n(α), x̃ ∩ ỹ = ∅ (Qc10)

(qbit x̃).c?[ỹ].P = c?[ỹ].(qbit x̃).P if x̃ ∩ ỹ = ∅ (Qc11)

(qbit x̃).c![ỹ].P = c![ỹ].(qbit x̃).P if x̃ ∩ ỹ = ∅ (Qc12)

{measure x}.0 = 0 (Qs1)

{x̃ ∗= U}.0 = 0 (Qs2)

(qbit x).0 = 0 (Qs3)

α . τ . P = α . P (Tau1)

α.{x̃ ∗=Π}.P{π(q̃)/x̃} = α.P if x̃ ⊆ n(α) (Qp1)

(qbit x).{ỹ, x ∗= U}.P = (qbit x).{ỹ, x ∗= V }.P if U(Iỹ ⊗ |0〉) = V (Iỹ ⊗ |0〉)
(Qd1)

c?[x : Bit] . P (x) = c?[x : Bit] . Q(x) if P (x) = Q(x) for all x ∈ {0, 1} (Cv1)

(new c)(P +Q) = (new c)P + (new c)Q (R1)

(new c)α.P = 0 if α ∈ {c?[·], c![·]} (R2)

(new c)α.P = α.(new c)P if α /∈ {c?[·], c![·]} (R3)

Fig. 2. Axioms for full probabilistic branching bisimilarity.

5 Equational theory of CQP

The congruence property of behavioural equivalence guarantees that equiva-
lent processes remain equivalent in any context, which is the foundation for
equational reasoning. The axioms for full probabilistic branching bismilarity are
shown in Figure 2 and have been proved sound in [2]. The axioms were used
in the analysis of the quantum teleportation protocol which is reported in [2]
but does not help us to verify other quantum protocols like SDC ,QECC etc. In



this paper, we demonstrate the usefulness of the equational theory of CQP by
introducing additional three new axioms Cv1, Qi3 and Tau1, that helps us to
take a step further to analyse various other important quantum protocols.

c?[x : Bit] . P (x) = c?[x : Bit] . Q(x) if P (x) = Q(x) for all x ∈ {0, 1} (Cv1)

The classical value rule Cv1 enables us to compare processes that are controlled
by the classical bit, say x. This rule will be used when we analyse the SDC
protocol. Rule Qi3 introduced in this paper is an extension of the identity rule
Qi2. This rule, expresses the principle of deferred measurement [16] and helps
us to analyse QECC protocol, where the unitary operator U is controlled by the
measurement of more than one qubit

{ỹ ∗= Umeasure x.measure z}.P = {(x, z), ỹ ∗= CU}.{measure x} . {measure z}.P
(Qi3)

The correctness of QECC has been proved by creating bisimulation relations [3]
and in this paper, we show that we can analyse QECC by not creating bisimu-
lation relations explicitly. Finally, we define the Tau1 rule that helps to remove
the unnecessary τ which arise during the elimination of parallel composition.

α . τ . P = α . P (Tau1)

The new axioms introduced in the paper are proved to be sound [17].

5.1 Analysing Quantum Secret Sharing

Now, we present the use of an axiomatic approach for proving that the processes
are equivalent with respect to full probabilistic branching bisimilarity that is
defined earlier. We begin by applying the expansion law E1 to the definition of
QSS , to get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . (new e, f)
(c?[q] . (Alice ′ | Bob | Charlie) + {y ∗= H} . (Alice | Bob′ | Charlie)+
e?[i, j] . (Alice | Bob | Charlie ′))

(1)

where Alice = c?[q] .Alice ′, Bob = {y∗=H} .Bob′ and Charlie = e?[i, j] .Charlie ′.
Using the rules R1 and R2 on Eq. 1, the third term of the sum vanishes to give:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . (new e, f)
(c?[q] . (Alice ′ | Bob | Charlie) + {y ∗= H} . (Alice | Bob′ | Charlie))

(2)

Expanding Eq. 2 as before, we get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . (new e, f)(c?[q] . {y ∗= H} .
(Alice ′ | Bob′ | Charlie) + {y ∗= H} . c?[q] . (Alice ′ | Bob′ | Charlie) + {y ∗= H} .
f ![measure y] . (Alice | 0 | Charlie) + c?[q] . {q, x ∗= CNOT} . (Alice ′ | Bob | Charlie))

(3)



Using restriction rules R1−R3 and commutative identities, Qc7 and Qc8, we
can commute between the process terms which leads to the first two terms in
Eq. 3 essentially the same and the third term is eliminated to give:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . c?[q] .
({y ∗= H} . (new e, f)(Alice ′ | Bob′ | Charlie) + {q, x ∗= CNOT} .
(new e, f)(Alice ′ | Bob | Charlie))

(4)

Repeating the procedure of expansion and using the reduction rules, we get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . c?[q] . {q, x ∗= CNOT} .
{q ∗= H} . {y ∗= H} . (0 + 0 + (new e, f) . τ . f ![measure y] .0 | f?[k :Bit] .
{z ∗= Zk} . {z ∗= Xmeasure r} . {z ∗= Zmeasure q} . d![z] .0

(5)
where τ represents the communication between Alice and Charlie, which hap-
pens internally. Similarly, the communication between Bob and Charlie gives:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . c?[q] .
{q, x ∗= CNOT} . {q ∗= H} . {y ∗= H} . (new e, f) . τ . τ .
{z ∗= Zmeasure y} . {z ∗= Xmeasure r} . {z ∗= Zmeasure q} . d![z] .0

(6)

After several iterations using R3 and followed by (new e, f) .0 = 0, we get:

(qbit x, y, z) . {x ∗= H} . {x, y ∗= CNOT} . {y, z ∗= CNOT} . c?[q] .
{q, x ∗= CNOT} . {q ∗= H} . {y ∗= H} . τ . τ . {z ∗= Zmeasure y} .
{z ∗= Xmeasure r} . {z ∗= Zmeasure q} . d![z] .0

(7)

Finally, we remove the two τ transitions by using the Tau1 rule and thereby
arrive at the sequentialised definition of QSS .

Proposition 1. QSS (c, d) -c Identity(c, d)

Proof. We will now simplify Eq. 7 and transform it into the Identity process
by using the axioms in Figure 2. Rule Qi1 allows us to manipulate quantum
operators by combining the unitary actions into a single operation:

(qbit x, y, z) . {x, y, z ∗= CNOTyz.CNOTxy.Hx} . c?[q] . {q, x, y ∗= Hy.Hq.CNOTqx} .
{z ∗= Zmeasure y} . {z ∗= Xmeasure x} . {z ∗= Zmeasure q} . d![z] .0

The subscripts on the unitary operators indicates to which qubits they are ap-
plied. Applying rule Qi2 to the measurement operations in the above process
and noting that CX = CNOT, we get:

(qbit x, y, z) . {x, y, z ∗= CNOTyz.CNOTxy.Hx} . c?[q :Qbit] .
{q, x, y ∗= Hy.Hq.CNOTqx} . {y, z ∗= CZ} . {measure y} . {x, z ∗= CNOT} .
{measure x} . {q, z ∗= CZ} . {measure q} . d![z] .0

We can swap the operators around due to commutativity provided that the
operators are not acting on the same qubits. For example, we swap the order



of the measurement on z and the controlled-Z operator on x and y because
the qubits are independent; mathematically, this is due to the use of the tensor
product. The commutativity of internal operators are expressed by the rules
Qc1-Qc6. Using Qc2 on the above process, we can move the measurements,
and then using Qi1, the unitary operators are combined to give:

(qbit x, y, z) . {x, y, z ∗= CNOTyz.CNOTxy.Hx} . c?[q :Qbit] .
{q, x, y ∗= Hy.Hq.CNOTqx} . {q, x, y, z ∗= CZqz.CNOTxz.CZyz} .
{measure y} . {measure x} . {measure q} . d![z] .0

The rules Qc7-Qc10 consider the commutativity of unitary operations with
input and output actions by applying certain conditions if ỹ ⊆ n(α) and x̃∩ỹ = ∅.
The first condition is important as it ensures that there is no blocking behaviour.
We are also able to commute qubit declarations with input and output actions
since a qubit declaration is never blocking. This is expressed by the rules Qc11
and Qc12. We use these rules to bring the input action to the top and move the
measurement operations after the output to give:

c?[q] . (qbit x, y, z) . {x, y, z ∗= CNOTyz.CNOTxy.Hx}{q, x, y ∗= Hy.Hq.CNOTqx} .
{q, x, y, z ∗= CZqz.CNOTxz.CZyz} . d![z] . {measure y} . {measure x} . {measure q} .0

With the help of the principle of deferred measurement, we were able to swap
classical control for quantum control. Now we consider the principle of implicit
measurement [16] which states that, any qubits at the end of a circuit may be
assumed to be measured. This is provided by the rule Qs1. Applying this rule
to eliminate the measurements and combining the remaining quantum operators
with Qi1, we obtain:

c?[q] . (qbit x, y, z) .
{q, x, y, z ∗= CZqz.CNOTxz.CZyz.Hy.Hq.CNOTqx.CNOTyz.CNOTxy.Hx} . d![z] .0

In a similar way, the unitary operators and qubit declarations are removed by
using the rules Qs2 and Qs3. We see that the qubits y, q and x will each finish
in the state 1√

2
(|0〉+ |1〉). So, we apply the Hadamard operator to each using the

rule Qs2 which allows these operations to be added. Combining these operators
to a single unitary action by using Qc8 and Qi1; we get

c?[q] . (qbit x, y, z) .
{q, x, y, z ∗= Hy.Hq.Hx.CZqz.CNOTxz.CZyz.Hy.Hq.CNOTqx.CNOTyz.CNOTxy.Hx} .
d![z] .0

Next, we insert a permutation in order to swap the output qubit z with q.
Rule Qp1 defines this action where π is the permutation of qubits and the
corresponding permutation on the quantum state is given by Π. Applying this
rule and followed by Qi1, we get

c?[q] . (qbit x, y, z) . {q, x, y, z ∗= U} . d![q] .0 (8)



where π(q) = z, π(z) = q, π(x) = x, π(y) = y and U = Π.Hy.Hq.Hx.CZqz.CNOTxz.
CZyz.Hy.Hq.CNOTqx.CNOTyz.CNOTxy.Hx. Now, we have the qubit declaration
(qbit x, y, z) which introduces three qubits in the combined state |000〉. We can
define a linear map Q for which the action of teleportation on the single qubit q
is given by UQ. Based on Qi1, we use a similar rule Qd1 to deal with quantum
operators that appear under qubit declarations.

We have UQ = IqxyzQ where Iqxyz is the identity operator on qubits q, x, y, z.
Then by applying Qd1 to Eq. 8, we get c?[q] . {q, x, y, z ∗= I} . d![q] .0. We can
now apply Qi1, Qc8 and Qs3 to give

c?[q] . {q ∗= I} . d![q] .0

This is a special case of Qp1 where we consider identity permutation that results
in the process which we are aiming for: c?[q] . d![q] .0 ut

5.2 Other quantum protocols

In this section, we will discuss the analysis of three essential quantum protocols
using our axioms. The CQP definitions of all the protocols are given in Figure 3.
We have omitted the types of channels in our definitions for brevity.

Superdense Coding (SDC): It involves two users (Alice and Bob) sharing
a pair of entangled qubits. In this protocol, two classical bits are communicated
by exchanging a single qubit. Alice is in possession of the first qubit, while
Bob has possession of the second qubit. By sending the single qubit in her
possession to Bob, it turns out Alice can communicate two classical bits to Bob.
The specification process for this protocol is CIdent .

Proposition 2. SDC (c, d) -c CIdent(c, d)

Proof. We begin by eliminating the parallel composition in the process SDC as
we had done earlier for QSS . By applying the expansion law E1 to the definition
of SDC , to get:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNOT} . (new e)(c?[a, b] .
(Alice ′ | Bob) + e?[x] . (Alice | Bob′))

(9)

where Alice ′ = c?[a, b] .Aliceand Bob′ = e?[x] .Bob. Using the rules R1−R3 on
Eq. 9, the second term of the sum vanishes and rearranging the terms, we get:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNOT} . c?[a, b] . (new e)({x ∗= Xb} . {y ∗= Za} .
e![x] .0 | e?[x] . {x, y ∗= CNOT} . {x ∗= H} . d![measure x,measure y] .0)

(10)
Expanding Eq. 10 as before and doing similar manipulations, we arrive at:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNOT} . c?[a, b] . {x ∗= Xb} . {y ∗= Za} . (new e)
(e![x] .0 | e?[x] . {x, y ∗= CNOT} . {x ∗= H} . d![measure x,measure y] .0)

(11)



Alice(c, e, x, y) = c?[a :Bit, b :Bit] . {x ∗= Xb} . {y ∗= Za} . e![x] .0
Bob(e, d, y) = e?[x :Qbit] . {x, y ∗= CNOT} . {x ∗= H} . d![measure x,measure y] .0
SDC (c, d) = (qbit x, y)({x ∗= H} . {x, y ∗= CNOT} . (new e)(Alice(c, e, x, y) | Bob(e, d, y))
CIdent(c, d) = c?[a :Bit, b :Bit] . d![a, b] .0

(i)
Elsa(a, c, d) = (qbit x, y)a?[q :Qbit, r :Qbit] . {x ∗= H} . {x, y ∗= CNOT} . c![q, x] . d![r, y] .0
Anna(c, e, f, g) = c?[q, x] . {x, q ∗= CNOT} . e?[j :Bit] . {x ∗= Xmeasure q} . f ![measure q] .
{x ∗= Zj} . g![x] .0
Iven(d, f, e, h) = d?[r, y] . {r, y ∗= CNOT} . {r ∗= H} . e![measure r] . f?[i :Bit] . {y ∗= Xi} .
{y ∗= Zmeasure r} . h![y] .0
Bob(g, h, b) = g?[x] . h?[y] . b![x, y] .0
RCNOT (a, b) = (new c, d, e, f, g, h)(Elsa(a, c, d) |Anna(c, e, f, g) | Iven(d, f, e, h) | Bob(g, h, b))
SCNOT (a, b) = a?[q :Qbit, r :Qbit] . {r, q ∗= CNOT} . b![q, r] .0

(ii)
Alice(a, b) = (qbit y, z)a?[x :Qbit] . {x, z ∗= CNot} . {x, y ∗= CNot} . b![x, y, z] .0
NoiseRnd(p) = (qbit u, v){u ∗= H} . {v ∗= H} . p![measure u,measure v] .0

NoiseErr(b, p, c) = b?[x :Qbit, y :Qbit, z :Qbit] . p?[j :bit, k :bit] . {x ∗= Xjk} . {y ∗= Xjk} .
{z ∗= Xjk} . c![x, y, z] .0
Noise(b, c) = (new p)(NoiseRnd(p) |NoiseErr(b, p, c))
BobRec(c, p) = (qbit s, t)c?[x, y, z] . {x, s ∗= CNot} . {y, s ∗= CNot} . {x, t ∗= CNot} .
{z, t ∗= CNot} . p![x, y, z,measure s,measure t] .0

BobCorr(p, d) = p?[x, y, z, j :bit, k :bit] . {x ∗= Xjk} . {y ∗= Xjk} . {z ∗= Xjk} .
{x, y ∗= CNot} . {x, z ∗= CNot} . d![x] .0
Bob(c, d) = (new p)(BobRec(c, p) | BobCorr(p, d))
QECC (a, d) = (new b, c)(Alice(a, b) |Noise(b, c) | Bob(c, d))

(iii)

Fig. 3. CQP definitions of quantum protocols: (i) Superdense coding (SDC), (ii) Re-
mote CNOT (RCNOT) and (iii) Quantum error correction (QECC).

The next is a τ transition that happens internally and then performing several
iterations using R3 and followed by (new e) .0 = 0, we get:

(qbit x, y) . {x ∗= H} . {x, y ∗= CNOT} . c?[a, b] . {x ∗= Xb} . {y ∗= Za} .
τ . {x, y ∗= CNOT} . {x ∗= H} . d![measure x,measure y] .0

(12)

Then using Tau1 in Eq. 12, we arrive at the sequentialised form of definition of
SDC :

(qbit x, y) . {x ∗= H} . {x, y ∗= CNOT} . c?[a, b] . {x ∗= Xb} . {y ∗= Za}
{x, y ∗= CNOT} . {x ∗= H} . d![measure x,measure y] .0

(13)

Using the rule Qi1 on Eq. 13 to combine the unitary actions to give:

(qbit x, y) . {x, y ∗= CNOTxy.Hx} . c?[a, b] . {xy ∗= Hx.CNOTxy.Z
a
y.X

b
x}

d![measure x,measure y] .0
(14)



(qbit x, y)a?[q :Qbit, r :Qbit] . {x ∗= H} . {x, y ∗= CNOT} . {x, q ∗= CNOT} . {r, y ∗= CNOT} .
{r ∗= H} . {x ∗= Xmeasure q} . {y ∗= Xmeasure q} . {x ∗= Zmeasure r} . {y ∗= Zmeasure r} . b![x, y] .0

Applying Qi1 and Qi2 to combine the unitary operations, we get:
(qbit x, y)a?[q, r] . {q, r, x, y ∗= Hr.CNOTry.CNOTxq.CNOTxy.Hx} . {q, x, y ∗= CNOTqy.CNOTqx} .
{measure q} . {r, x, y ∗= CZry.CZrx} . {measure r} . b![x, y] .0
Applying Qc2,Qc10, and Qs1 to remove the measurements:

(qbit x, y)a?[q, r] . {q, r, x, y ∗= Hr.CNOTry.CNOTxq.CNOTxy.Hx} . {q, x, y ∗= CNOTqy.CNOTqx} .
{r, x, y ∗= CZry.CZrx} . b![x, y] .0

Applying Qc11 and Qi1,to move the input action in the front and combining the unitary operations:
a?[q, r] . (qbit x, y) . {q, r, x, y ∗= CZry.CZrx.CNOTqy.CNOTqx.Hr.CNOTry.CNOTxq.CNOTxy.Hx}
. b![x, y] .0
Applying Qs2,Qc8 and Qi1, to add a Hadamard operation on qubit r to give:
a?[q, r] . (qbit x, y) . {q, r, x, y ∗= Hr.CZry.CZrx.CNOTqy.CNOTqx.Hr.CNOTry.CNOTxq.CNOTxy.
Hx} . b![x, y] .0
Applying Qp1 a permutation operator to perform π(q) = x and π(x) = q, we get:
a?[q, r] . (qbit x, y) . {q, r, x, y ∗=Π.Hr.CZry.CZrx.CNOTqy.CNOTqx.Hr.CNOTry.CNOTxq.CNOTxy.
Hx} . b![q, y] .0

Applying Qs2,Qc8 and Qi1 to add a Hadamard operation on qubit x to give:
a?[q, r] . (qbit x, y) . {q, r, x, y ∗= Hx.Π.Hr.CZry.CZrx.CNOTqy.CNOTqx.Hr.CNOTry.CNOTxq.
CNOTxy.Hx} . b![q, y] .0
Applying Qp1 a permutation operator as before to perform π(r) = y and π(y) = r, we get:
a?[q, r] . (qbit x, y) . {q, r, x, y ∗=Π.Hx.Π.Hr.CZry.CZrx.CNOTqy.CNOTqx.Hr.CNOTry.CNOTxq.
CNOTxy.Hx} . b![q, r] .0
Applying Qd1, we get: a?[q, r] . (qbit x, y) . {r, q ∗= CNOT} . {x, y ∗= I} . b![q, r] .0
Applying Qc8,Qs2,Qc3 and Qs3, we get: a?[q, r] . {r, q ∗= CNOT} . b![q, r] .0

Fig. 4. Reasoning about Remote CNOT

To move the input actions to the top, we apply Qc7 and Qc11 on Eq. 14 to
give:

c?[a, b] . (qbit x, y) . {x, y ∗= CNOTxy.Hx}{xy ∗= Hx.CNOTxy.Z
a
y.X

b
x}

d![measure x,measure y] .0
(15)

Applying Qi1 on Eq. 15, we arrive at the sequential definition of SDC .

c?[a, b] . (qbit x, y) . {x, y ∗= Hx.CNOTxy.Z
a
y.X

b
x.CNOTxy.Hx} . d![measure x,measure y] .0

Then by applying the rules Qi1 to combine the unitary operations into a single
action and using Qc7 and Qc11 to move the input action to the beginning of
the process, we get:

c?[a :Bit, b :Bit] . (Qbit : x, y) . {xy ∗= Uab} . d![measure x,measure y] .0 (16)

Here, Uab = Hx.CNOTxy.Z
a
y.X

b
x.CNOTxy.Hx, is a unitary operator which de-

pends on the classical bits a and b. Now, let P (a, b) = (Qbit : x, y) . {xy ∗=



Uab} . d![measure x,measure y] .0 and Q(a, b) = d![a, b] .0 be two processes that
are parameterised by the classical bits a and b. It can be proven easily that
P (a, b) -c Q(a, b) for all possible values of a and b. Hence using Cv1, Eq. 16 -c

c?[a, b] . d![a, b] .0, which is the specification process CIdent . ut

Remote CNOT (RCNOT ): The protocol [20] demonstrates the concept
of teleporting a quantum logic gate. Our definitions for the protocol are shown
in Figure 3(ii) consisting of four users. Anna and Iven have in their possession
qubits q and r respectively, which they have received from Elsa. Also, Elsa
has prepared an EPR pair with qubits x and y before sharing it with Anna
and Iven. The objective of the protocol is that Anna and Iven would like to
perform a CNOT operation with their qubits q and r, without communicating
any quantum information between them. Anna entangles her qubits q and x
by performing a CNOT and Iven performs the same with his qubits in addition
to a H operation on r before measuring it. He then sends the result to Anna.
She measures her qubit q and performs certain unitary operations on x based on
the outcome of her’s and Iven’s measurements. Also, she sends her measurement
outcome to Iven. Hence, Anna and Iven communicate only their classical results
between them, which are used to perform unitary operation on their EPR pair.
Essentially Iven’s qubit y is a CNOT operation of q and r and they communicate
their EPR pair qubits (x and y) to Bob. The specification of RCNOT is SCNOT .

Proposition 3. RCNOT (a, b) -c SCNOT (a, b)

Proof. The proof is provided in Figure 4. ut

Quantum Error Correction (QECC): QECC consists of three processes:
Alice, Bob and Noise. Alice wishes to send a qubit to Bob over a noisy chan-
nel, represented by Noise. She uses a error correcting code based on threefold
repetition [16]. The code is able to correct single bit-flip error in each block of
three transmitted qubits, so for the purpose of this example, in each block of
three qubits, Noise either applies X to one of them or does nothing. Bob uses
the appropriate decoding procedure to recover Alice’s original qubit. The CQP
definitions are provided in Figure 3 (iii) and this system is equivalent to Identity .

Proposition 4. QECC (a, d) -c Identity(a, d)

Proof. The proof is provided in Figure 5 and alternatively given in [3] by con-
structing a bisimulation. In Figure 5, we begin with the sequentialised definition
of QECC which is obtained in the same way as we had done for the previous
protocols. ut

Proposition 5. Teleport -c QSS -c QECC

Proof. Quantum teleportation (Teleport) is a protocol which allows two users
who share an entangled pair of qubits to exchange an unknown quantum state
by communicating only two classical bits. The CQP definition of Teleport pro-
tocol and the proof that Teleport -c Identity are provided in [2]. We prove the
proposition easily using the transitivity of -c as we have seen that QECC and
QSS are equivalent to Identity through Propositions 1 and 4. ut



(qbit y, z)a?[x] . {x, y, z ∗= CNOTxy.CNOTxz} . (qbit u, v){u, v ∗= Hv.Hu} .
{x ∗= Xmeasure u.measure v} . {y ∗= Xmeasure u.measure v} . {z ∗= Xmeasure u.measure v} . (qbit s, t) .
{x, y, z, s, t ∗= CNOTzt.CNOTxt.CNOTys.CNOTxs} . {x ∗= Xmeasure s.measure t} .
{y ∗= Xmeasure s.measure t} . {z ∗= Xmeasure s.measure t} . {x, y, z ∗= CNOTxz.CNOTxy} . d![x] .0

Applying Qi3,Qc2,Qs1 and Qc3, we get:(qbit y, z) . a?[x] . (qbit u, v) . (qbit s, t) .
{x, y, z, u, v ∗= CNOT(uv)z.CNOT(uv)y.CNOT(uv)x.Hv.Hu.CNOTxy.CNOTxz} .
{x, y, z, s, t ∗= CNOTxz.CNOTxy.CNOT(st)z.CNOT(st)y.CNOT(st)x.CNOTzt.CNOTxt.CNOTys.CNOTxs}
. d![x] .0

Applying Qc11 and Qi1, we get:
a?[x] . (qbit y, z, u, v, s, t) . {x, y, z, u, v, s, t∗ = CNOTxz.CNOTxy.CNOT(st)z.CNOT(st)y.CNOT(st)x.
CNOTzt.CNOTxt.CNOTys.CNOTxs.CNOT(uv)z.CNOT(uv)y.CNOT(uv)x.Hv.Hu.CNOTxy.
CNOTxz} . d![x] .0

Applying Qs2,Qi1 and Qd1, we get: a?[x] . (qbit y, z, u, v, s, t) . {x, y, z, u, v, s, t ∗= I} . d![x] .0
Applying Qi1, we get: a?[x] . (qbit y, z, u, v, s, t) . {x ∗= I} . {y, z, u, v, s, t ∗= I} . d![x] .0
Applying Qc10,Qs1,Qc12 andQs3, we get: a?[x] . d![x] .0

Fig. 5. Reasoning about quantum error correction

The congruence property helps to analyse a combination of systems. For ex-
ample, if we consider a process defined as System (c, d) = (new a)Teleport(c, a) |
QECC (a, d). We can consider this equivalent to a process (new a)Teleport(c, a) |
Identity(a, d) by using Proposition 4. This is also equivalent to (new a)Identity(c, a)|
Identity(a, d) which is equivalent to Identity(c, d).

6 Conclusion and Future Work

We have explained the use of the quantum process calculus CQP in analysing
various quantum protocols. We have summarised the theory of equational axioms
based on the concept of behavioural equivalence which is presented in full detail
in [2]. We present the analysis of QSS by using the equational axioms and have
verified the correctness of QSS and other quantum protocols.

Verification of the quantum protocols using the bisimulation relations re-
quires hard work. First, we need to perform the computation of the System
(that models the system of interest) and the Specification, which expresses the
desired behaviour of System, and then we need to establish a bisimulation rela-
tion. Because of equational reasoning, we show that we can reduce the need to
explicitly construct bisimulation relations. The next step for this line of research
is to prove the completeness of these laws. The axioms provide the additional
advantage for automated reasoning which is our long-term goal following the
recent work on automated equivalence checking [1].
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