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Abstract. We present a quantum circuit representation consisting en-
tirely of qubit initialisations (I), a network of controlled-NOT gates (C)
and measurements with respect to different bases (M). The ICM repre-
sentation is useful for optimisation of quantum circuits that include tele-
portation, which is required for fault-tolerant, error corrected quantum
computation. The non-deterministic nature of teleportation necessitates
the conditional introduction of corrective quantum gates and additional
ancillae during circuit execution. Therefore, the standard optimisation
objectives, gate count and number of wires, are not well-defined for gen-
eral teleportation-based circuits. The transformation of a circuit into the
ICM representation provides a canonical form for an exact fault-tolerant,
error corrected circuit needed for optimisation prior to the final imple-
mentation in a realistic hardware model.

1 Introduction

Quantum computing promises speed-ups for a number of relevant computational
problems. Building a scalable and reliable quantum computer is one of the chal-
lenges of modern science. As the size of quantum computers increases, the focus
of interest shifts from their basic physical principles to structured design method-
ologies that will allow us to realise large-scale systems.

In general, quantum circuit optimisation methods are used to minimise the
implementation costs like the number of gates or the number of wires [WD10].
Classical circuit optimisation assumes fixed gate lists even in the presence of gate
errors, but classical circuits are more robust towards errors, whereas quantum
information is fragile [NCI0, Ch. 8]. Classical gate failures are usually solved
either by hardening the circuit (e.g. modifying transistor sizes), or by introduc-
ing various types of information redundancies that mitigate the failures. Gate
hardening is not considered realistic in quantum computing architectures, and
a feasible solution requires quantum error-correcting codes (QECC) [DMNT3].
The structure and design of QECC allows encoded quantum gates to be applied
directly to the encoded quantum data.
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In contrast to the classical case, the most practical implementations of QECC
and fault-tolerant quantum circuits are composed of gates which are non-deter-
ministic even in the absence of errors [FMMCI2]. They either work correctly
or require a correction, which is only determined during the execution of the
circuit. Most such correction gates do not need to be dynamically included into
the executing circuit, because their effect can be classically tracked through the
subsequent gates [PDNP14]. This is not true for all possible corrections occur-
ring during the execution of a quantum circuit and some need to be actively
applied to the quantum data[FMMCI2]. This means that the overall circuit is
dynamic, because its gate list needs to be modified during its execution based on
certain measurement results. Reducing the incidence of such gates is difficult be-
cause when a fully error-corrected, fault-tolerant circuit is examined, it is exactly
these measurement based corrections that appear to give quantum computing
its power [Fowl12]. In general, fault-tolerant quantum circuits are constructed
from Clifford and T' (Section gates, and the T gate is the main source of
the complications [AMMRI3] for which dynamic corrections cannot be avoided.

The separation of circuit gates into Clifford and T gates is generally per-
formed at the higher level circuit design layer in order to make fault-tolerant error
constructions more amenable to practical implementation. The physical mapping
of these circuits to an actual error corrected architecture is then done with a spe-
cific QECC and hardware architecture in mind, preserving fault-tolerance. Fault-
tolerance is understood as the set of procedures by which the cascade of quantum
errors (bit and phase flips) caused by the circuit [DMN13] is restricted allowing
the underlying QECC to be effective when mapped to actual operations in a
hardware model. In standard fault-tolerant constructions (those that are widely
used in state-of-the-art hardware models [DFST09Y JGT12INTD T 14JJMF"12]),
the only dynamic corrections needed are when we implement logical layer cor-
rections for T gates. These correctional gates are constructed using ancillae ini-
tialised into high-fidelity states (see Section and gate teleportation proto-
cols [EMMCT12]. Our results are quite similar to those present in Ref. [DKP07],
however this work focuses on producing a representation that is compatible with
fault-tolerant error correction protocols.

The solution to having all the required corrections into the logical layer of
the computation is to translate circuits into a regular representation that re-
places correctional gate dynamics with the dynamics of reading and interpreting
the circuit outputs. Such an approach is similar to the model of measurement
based quantum computing (MBQC) [BBD™09], where a computation is solely
described by the interpretation of the measurements performed on a specifi-
cally initialised quantum state. A circuit is described in this work as an ICM
sequence, where the I part contains qubit initialisations, the C' part is a sub-
circuit consisting entirely of CNOT gates, and the qubits are measured in the
M part. This work represents a separate and distinct approach from the work
of [MSD14], where NCV (reversible) circuits were mapped into Clifford and T
gate circuits, because the ICM representation is regular and consists entirely of
ancillae, CNOTs and measurements.
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The ICM representation is the extension of the methods presented in [Fow12]
to fit into the measurement based paradigm [BBD™09]. The presented algorith-
mic formulation will output the ICM representation for arbitrary quantum and
reversible circuits. Such a formulation, although it requires an increased num-
ber of ancillae, allows us to directly synthesise fully fault-tolerant error corrected
circuits for an underlying higher level circuit (including all required ancillary pro-
tocols), represents the realistic resource requirements of fault-tolerant quantum
computations for state-of-the-art quantum architectures [DSMN13l/Got13] and
provides an elegant form for further circuit optimisation techniques for QECC
models such as topological codes [PF13IDev13].

The paper is organised as follows: Section offers a short introduction to
quantum computing, illustrates the concepts of controlled and rotational gates,
discusses the reversibility aspects of computing and the applications of infor-
mation and gate teleportations. Section |2 details the non-deterministic resource
requirements of arbitrary quantum circuits, introduces the ICM representation
and presents the algorithm used for achieving it. The algorithm is benchmarked
using circuits from the RevLib library and the results are discussed in Section
Finally, conclusions and future work are formulated.

1.1 Quantum and reversible computing

Quantum circuits represent and manipulate information in gqubits (quantum
bits). The quantum state of a qubit is the vector 1)) = (ag, a1)T = ag|0) +aq|1).
Here, |0) = (1,0)T and |1) = (0,1)T are quantum analogues of classical logic val-
ues 0 and 1, respectively. ag and « are complex numbers called amplitudes with
|OZ()|2 + |011‘2 =1.

A state may be modified by applying single-qubit quantum gates. Each quan-
tum gate corresponds to a complex unitary matrix, and gate function is given
by multiplying that matrix with the quantum state. The application of X gate
to a state results in a bit flip: X(ap,a1)” = (a1, 29)T. The application of the Z
gate results in a phase flip: Z(ag, a1)T = (g, —a1)”. The matrices of the Pauli
gates I, X, Y, Z are:

10 00—z 01 10
= (av) = () = (V) 7= (64)
Further important single-qubit quantum gates in the context of this work are
H,P, T, where T? = P and P2 = Z.

() () - )

Quantum measurement is defined with respect to a basis and yields one of
the basis vectors with a probability related to the amplitudes of the quantum
state. Of importance in this work are Z- and X-measurements. Z-measurement
is defined with respect to basis (|0, |1)). Applying a Z-measurement to a qubit in
state |¢) = ap|0)+aq|1) yields |0) with probability |ag|? and |1) with probability
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Figure 1: Toffoli gate using CNOT, T, TT and H gates [NCI0, Ch. 4].

|1 |%. Moreover, the state [1)) collapses into the measured state (i.e. only the com-
ponents of 1)) consistent with the measurement result remains). X-measurement
is defined with respect to the basis (|4),|—)), where |+) = %OO} + |1)) and

-) = 5(0) = [1)).

1.2 Rotational gates

The exponentiation of the Pauli matrices results in the rotational gates R, Ry,
R, parametrised by the angle of the rotation [NCT0, Ch. 4]. Hence the bit flip is
a rotation by 7 around the X-axis, implying that X = R, (), and the phase-flip
is a rotation by 7 around the Z-axis, such that Z = R,(n). Furthermore, P =
R.(7/2) and T = R.(7/4). The V and VT gates are parametrised X-rotations,
V = R, (m/2). The Hadamard gate is H = R,(7w/2)R,(n/2)R,(w/2) = PV P.

[ - i 0 [ i 0

COs 5 —1SIm 5 COs 5 —8SIn 5

Rw(e) - . .29 92 Ry(&) - . 3 92
—iS1 3 COS3 s 3 COS 3

10007

e~0/2 0100
RZ(H):[ 0 ew/?] CNOT = 0001
0010 ]

1.3 Controlled gates

An n-qubit circuit processes states represented by 2" amplitudes, «,, with y €
{0,1}" and >, lay|? = 1. Measuring all qubits of the circuit results in one
basis vector with the probability given by the corresponding amplitude, \ay\g.
Quantum gates may act on several qubits simultaneously. A gate operating on n
qubits is represented by a 2™ x 2™ complex unitary matrix. One important two-
qubit gate is the controlled-not CNOT (¢, t) gate, where the ¢ qubit conditionally
flips the state of the ¢ qubit when set to |1). In general, any quantum gate can
be used in a controlled manner, and other versions are controlled-Z (CPHASE),
controlled-V (C-V) and controlled-VT (C-VT), where V2 = X.

Similarly to how arbitrary classical Boolean functions can be constructed
entirely from NAND gates, universal quantum computations can be constructed
using a discrete set of gates. The universal gate set has to contain at least one
coupling operation, and the most often used one is CNOT. A commonly used
gate set in fault-tolerant quantum computing is UGSy = {CNOT, H,T'} [INCI0,
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Figure2: a) Toffoli gate using CNOT, controlled-V and controlled-VT
gates [NC10, Ch. 4]. b) The decomposition of the controlled-V using CNOT,
T, T" and H gates

Ch. 4]. There are gate sets that are not universal, an example is the Clifford gate
group, generated by the gates {CNOT, H, P}. Circuits comprised of gates ex-
clusively from the Clifford group can be efficiently simulated on a classical com-
puter [Got98], but the Clifford group together with the T gate is quantum univer-
sal. The T gate is one of the most expensive quantum gates to implement when
QECC and fault-tolerant computation is taken into account [DSMN13|Got13].
Thus, there is ongoing research into reducing the T gate count of synthesised
quantum circuits [JonT2JAMMRI3IMSD14].

1.4 Reversibility

The linearity of quantum mechanics has the effect that information can not
be erased, therefore, for an arbitrary computation, the number of input qubits
equals the number of output qubits. Reversible circuits, as presented in [WDI0ISM13],
are the result of enforcing this requirement on classical Boolean circuits. The
interest in classical reversible computing was initially motivated by Landauer’s
principle, which states that the erasure of information is dissipating energy [Moo12].
The hope was that computers might become more energy-efficient if classical
computations would be reversible. Therefore, FANINs and FANOUTSs are not
allowed into the circuits. The majority of the classical gates are not linear maps.
For example the inputs a and b of the AND(a,b) = ¢ gate are impossible to
infer from the output c. However, the NOT gate is reversible because its output
is the negation of the input, and no information is erased.

The reversibility of classical circuits is achieved by the Toffoli gate (Fig. ,
operating on three bits, where two of them control the bit-flip of the third:
toffoli(a,b, c) = (a,b,c ® ab). Arbitrary classical circuits can be completely con-
structed using Toffoli gates [NCI0, Ch. 3]. While a quantum Toffoli performs
effectively the same transformation on qubits, the key difference between quan-
tum and reversible circuits is that the Toffoli gate is not universal for quantum
computations because universality also require at least the H gate [Aha03]. Re-
versible circuits can be considered restricted quantum circuits operating only
on computational basis states. However, it is possible to decompose the Toffoli
gate into quantum gates (Fig. [I{and Fig. . One decomposition (the quantum
version) uses the gate set {ONOT, H, T} (TT = T7), while a second decompo-
sition uses the gates {CNOT,V,VT}. The second representation will be called
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Figure 3: Circuits for teleporting the state of a source qubit to a neighbouring
destination qubit.

the reversible version (although the V' gate is quantum), because its lower gate
cost makes it widely used in the designs of reversible circuits [SMI13IWD10], al-
though these costs generally don’t account for the true nature of error corrected
quantum circuits.

1.5 Information and Gate Teleportation

Quantum information (qubit states) cannot be copied [WZ82], but there are ways
to move information from one qubit to another through quantum state teleporta-
tion (Fig.|3) [BBCT93|. The most general teleportation technique [NCI0, Ch. 4]
is implemented using a slightly different mechanism, but quantum computing
models and architectures like [DFSTOIINTD™ 14l IMET12]Y JGT12[FMMCI2]
use the two circuits presented herein.

Each of the circuits requires an ancilla initialised into either |0) or |4). For
the first circuit, after applying the CNOT on the states |)) = a|0) + b|1) and
|0), the two-qubit state will be a|00) + b|11). The measurement of the input
qubit, in the X-basis is probabilistic, and depending on its result the final state
of the ancilla will be either [1) = a|0) + b|1) if |+) is measured, or |ig) =
al0) — b|1) for |—). The execution of the second circuit, where instead a Z-
basis measurement is used, will result in the state of the ancilla being |¢3) =
al0) + b|1) after measuring |0), or [¢4) = a|l) + b|0) after measuring |1). For
both teleportations the final state is the desired one with 50% probability (|11)
and |t¢2)), while otherwise correctional gates are required, because |¢1) = Z|t)a)
and |¢3) = X|1p4). The corrections are a direct result of the measurements being
probabilistic. The correction mechanism is illustrated in the circuit diagrams
by the double vertical lines connecting the measurements to the X/Z gates,
indicating a classically controlled gate of either X or Z.

Information teleportation is a linear transformation of the destination qubit,
such that its state is exactly the state of the source, but quantum gates are linear
transformations, too. It follows that it is possible to construct teleported versions
for single-qubit quantum gates. Such constructs are commonly used in the fault-
tolerant implementation of quantum gates. The teleportation-based gate circuits
for the V, T and P gates are shown in Fig.[d] The teleportations are again prob-
abilistic and the output state requires corrections (derived in [PDNP14]). Gate
teleportations are based on magic states [BK05| like |Y) = %(|0> +1i[1)) and

|A) = %(|0> + €'T|1)). The utilization of magic states and the above tele-
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Figure4: Teleported rotational gates using the magic states |A),|Y). a) The
teleported V' gate; b) The teleported T gate; ¢) The teleported P gate.

portation circuits is that they can be implemented using fault-tolerant QECC
through a process known as state distillation [BKOSIFMMCI2], which accounts
for the majority of resources necessary for a large-scale error corrected algo-
rithm [DMNT3].

The R.(7/4)" = TT = R,(—n/4) rotation is implemented using the same
circuit as the gate T', the only difference being the interpretation of the mea-
surement result in terms of any subsequent correction. Because the 7,71,V and
VT gates can be implemented by teleportations, it follows that the Toffoli gate (in
both its quantum and reversible versions) can be decomposed into teleportation
sub-circuits.

The magic states in the construction of fault-tolerant gates are assumed to
be high-fidelity (As high as the fidelity of the underlying quantum information
protected by the QECC). Otherwise, high-fidelity instances are obtained after
distilling multiple low-fidelity states using circuits consisting entirely of CNOT's
and measurements [BKO05]. For example, the distillation of a single |Y) state
from low-fidelity |Y") ancillae is reported in [BK05|, reducing the infidelity, p, of
the output from O(p), p < 1, of the seven inputs to O(p?®) on the output.

2 The ICM Representation

In state-of-the-art fault-tolerant quantum circuits, two sources of non-determinism
can be distinguished. First, errors can occur during calculation due to undesired
interaction with the environment. The errors are handled by quantum error-
correcting codes [DMNTI3]. Second, as mentioned above, the realisation of gates
by teleportation is inherently probabilistic. The outcome of the gate application
is correct with 50% probability and requires a correction with 50% probability
even in absence of errors.

Circuit gate dynamics, as presented in Section |1} is the consequence of apply-
ing specific quantum gates (e.g. T') by teleportation. Correctional gates may or
may not be required, depending on the outcome of a measurement that is only
available when the circuit is being executed. A further source of non-determinism
is error-correction, which is not considered herein and is handled at a lower level
in the overall design stack of a quantum circuit [FMMCI12].

A circuit with a dynamic gate list is difficult to execute on a quantum com-
puter, and is furthermore difficult to optimise. This section introduces the ICM
representation, which replaces the non-deterministic gate dynamics with an exact
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gate list. The resulting circuit still contains correctional mechanisms, but these
are controlled by measurement results of introduced ancillae and active feedfor-
ward determining subsequent measurement choices. We essentially fan-out using
extra ancillae to remove the complication of dynamic circuit construction with
fault-tolerant and reversible quantum circuits.

2.1 Non-deterministic Resource Requirements

Gate corrections may or may not be required after each teleportation. They
consist in applying X, Y, Z or P gates to the calculated result. Therefore, the
total number of gates in the circuit depends on the number of corrections, and
this number is not known a priori because the need for corrections is determined
only during circuit execution (each individual teleportation has a 50:50 chance
of each ancilla measurement result, so the possibilities grow exponentially in the
number of teleported gates). Moreover, corrections require an introduction of
additional ancillae qubits, thus making the computation total number of qubits
unpredictable as well.

It can be shown that X, Y and Z corrections (Pauli corrections) do not
have to be addressed immediately in a quantum way after an unsuccessful gate
application. Instead they can be postponed to the end of calculation using Pauli
tracking [PDNP14] and instead of applying an active quantum gate to the data,
we simply reinterpret the meaning of the classical measurement results. However,
this technique does not apply to P corrections necessary for implementing the T’
gate (Section . This is because the P correction does not commute through
either the H gate of the target of a CNOT gate in a straightforward manner
and changes the probability distribution of subsequent X-basis measurements.

For example, in the teleported T' gate (Fig. , applying a CNOT on two
qubits [t) = %(|0) + 7[1)) (where r = €7 ) and |g) = a|0) + b[1) results in
lqt) = (a|00) + ar|11) + b|10) + br|01))/v/2. The |0) result of the first qubit’s Z-
measurement will result in the second qubit’s state as if it were directly rotated
by T: al0) + br|l). If the measurement result is |1), the state is ar|1) + b]0),
which after a PX correction is required [PDNP14], and it can be applied using
the circuit from Fig.

The P correction requires us to dynamically change the circuit being executed
as this correction cannot be classically tracked. A second ancilla is introduced
in the |Y) = |0) 4 i|1) state, a CNOT applied between the ancilla and the state
to be corrected, and the input is measured according to Fig. For an n-qubit
circuit C' with a gate list GL(C), each probabilistic P correction increments the
number of qubits by one, and inserts a P gate into the gate list.

The problem of applying the P gate dynamically is solved by introducing
into the circuit the possibility to operate both a teleported identity gate, used
when no correction is needed, and a teleported P gate. Similarly to a classical
demultiplexer the measurement result of the teleported T gate is used to decide,
at run-time, whether I or P gate is applied. Finally, after performing either
the I or P correction, the corresponding state has to be routed to a single
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Figure 5: Teleportations: a) Selective destination; b) Selective source [Fow12).

qubit. This is realised by classically controlled teleportations in a manner similar
to a classical multiplexer with the select signal being the measurement result
of the teleported T gate. Classically controlled teleportations were described
in [Fowl2], and a circuit using these mechanisms will have a fixed number of
qubits and a determined gate list. Compared to a dynamically changing circuit,
these are larger, but the predictability of these parameters is useful for circuit
optimisation.

For selective destination teleportation (Fig.[5]) the first group of measurements
(Z1 X5 where the subscripts indicate the qubit’s number) will teleport |¢) on the
third qubit where it will be corrected by P. The second group of measurements
(X1Z,) will teleport the state to the fourth qubit where the trivial correction I
is applied, thus leaving the state unchanged. In the selective source teleportation
the X7 Z5 measurements will select |t/1) for teleportation on the third qubit, while
the second measurement group (Z7Xs) will teleport |¢2) [Fowl2]. The selective
teleportation circuits require only Pauli corrections, which are not shown in
the diagrams, because their application can be postponed to the end of the
computation and classically tracked.

As a consequence, Pauli tracking can reduce but not completely eliminate the
non-determinism of fault-tolerant circuits. This implies that standard synthesis
methods which optimise gate count and/or number of qubits are not applicable
to teleportation-based quantum circuits because these numbers are not well-
defined. It is possible to circumvent the non-determinism by using “conditional-
identity construction” which results in the maximal possible number of gates.
The initial gate dynamics of a circuit, with all the classically controlled cor-
rections replaced by classically controlled teleportations, is interpreted as the
dynamics of the measurements .

2.2 ICM Correctness and Construction

The role played by the structured representation of circuits was recognised
in [AG04], where stabiliser circuits were decomposed into a canonical sequence
of sub-circuits constructed from a single type of gates. In the context of fault-
tolerant quantum computing, the systematic derivations of the circuits [ZLC00]
uses teleportation sub-circuits, too. However, the combination of the fault-tolerant
constructions with the regular gate decompositions [SBMO0G], required for ef-
ficient synthesis algorithms, is limited by the realistic requirements of future
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quantum computing architectures. Nevertheless, structured mapping techniques
between various architectures were investigated in [HNYNIIICMS07]. These ap-
proaches were targeted at specific quantum hardware properties, such as nearest-
neighbour interaction between qubits, but fault-tolerant constructions were not
specifically addressed.

ICM is a structured representation, which consists in the regular repre-
sentation of arbitrary quantum and reversible circuits using the UGSy: gate
set, where the single-qubit rotational gates are teleportation-based. Circuits are
transformed into the ICM representation after decomposing all non-UG Sy, gates
into UGSy = {CNOT, H,T} component gates, and simultaneously introduc-
ing, where necessary, selective source and destination teleportation circuits into
the resulting circuit.

The correctness of the ICM representation is based on the observation that
the teleported gate circuits (Figs. and and the selective teleportation
circuits (Fig. |5) consist entirely of qubit initialisations, CNOT gates and qubit
measurements. Thus, decomposing an arbitrary circuit into elements that can
be expressed entirely using the above mentioned sub-circuits, will consist only
of initialisations, CNOTs and measurements. The circuit from Fig. Bh can be
rewritten, such that the P gate will not be directly applied: in general, R,
rotations (e.g. the P gate) commute with the control of CNOT gates [NCI0,
Ch. 4]. As a result, the P gate can be moved on the left side of the CNOT, and
P|+) = |Y). The third qubit from Fig. [5h will be initialised into |Y') instead of
|+).

The ICM representation of an arbitrary quantum circuit is the result of apply-
ing algorithm presented in this paper. The algorithm is taking a circuit composed
of gates from the set {Toffoli, CNOT,C-V and C-V' H, P, T}, and performs
pattern replacements resulting in the circuit CICM (Line 1) consisting of gates
from UGSy;. The Toffoli gates are decomposed into single qubit rotations (ei-
ther {V,VT} or {H, T, Tt}) and CNOT gates. The Hadamard gates are replaced
with the series of Z- and X-axis rotational gates (P and V gates). Afterwards,
each P and V gate is replaced using the corresponding teleportation-based gate
implementations from Figs. The effect of replacing a gate G acting on
qubit ¢ is that an ancilla is introduced on the position ¢ + 1. Thus, all the gates
following the initial application of G on i are moved to i + 1 (Line 20).

The ICM representation is obtained by mowving all the single-qubit measure-
ments to the end of the circuit, and all the ancillae initialisations to the be-
ginning of the circuit. The middle part of the resulting circuit consists entirely
of CNOT gates. The single qubit measurements are then temporally staggered
(e.g. Fig. @, such that the results of previous measurements determine the basis
choices for subsequent measurements to teleport data to pre-prepared ancillae.
In the case of the teleported T gate, this procedure dictates to either apply P
gate corrections or not, as required.
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2.3 Resource Analysis

Transforming arbitrary quantum and reversible circuits into the ICM represen-
tation requires the introduction of supplemental ancillae, CNOT gates and mea-
surements. The obtained representation is an augmented version of the initial
circuit, and there is a constant resource overhead associated with each gate trans-
formation. In the following the gate cost of implementing a sub-circuit (gate) S
is represented by ge(S), and the ancilla cost is denoted ac(S).

Theorem: The ICM representation of a quantum circuit C' with np T gates, np
P gates, ny V gates, ny Hadamard gates and nyy Toffoli gates requires ac(C) =
Snr+np+ny +3ng+42n7y ancillae and ge¢(C) = 6Np+np+ny +3ng+55nry
additional gates.

Proof: The central quantum gate is T', which requires ac(T) = 5 ancillae and
gc(T) = 6 CNOTs. One of the ancillae is the one initialised into |A), three
other ancillae are used for the selective destination teleportation sub-circuit,
and, finally, the fifth ancilla is introduced for the selective source teleportation
and represents the output of the teleported T gate.

The P and the V gates introduce a single ancilla ac(P) = ac(V) = 1 ini-
tialised into the |Y) state, and because the teleportation circuits require a single
CNOT gc(P) = ge(V) = 1. The Hadamard gate being implemented as a se-
quence of P and V gates generates a gate cost of gc(H) = 3gc(P) = 3, and an
ancilla cost of ac(H) = 3ac(P) = 3.

The quantum version of the Toffoli gate (denoted Toffoli,) decomposition
contains 6 CNOTSs, 7 T gates, one P and two H gates (Fig. , and thus
ge(Toffoliy) = 6+ Tge(T) 4+ (1 + 2 x 3)ge(P) = 55 and ac(Toffoliy) = Tac(T) +
(142 x 3)ac(P) = 42.

Note: The Theorem was formulated for the ICM decomposition of quantum
Toffoli gates, but can easily be updated to include the reversible version of these
gates (in the following denoted Toffoliz). These gates are decomposed into quan-
tum gates, and the initial version contains 2 CNOT gates and 3 controlled-V
gates (denoted by C'V'), which are further decomposed (Fig. into 2 Hadamard
gates, 3 T and 2 CNOTs. Therefore, because ge(CV) = 2gc(H)+3gc(T)+2 = 26
and ac(CV) = 2ac(H) + 3ac(T) = 21, the gate cost of the reversible Toffoli is
gc(Toffoliz) = 3gc(C'V) 42 = 80 and the ancilla cost ac(Toffoliz) = 3ac(CV) =
63.

State distillation (see Section is not analysed here, as it is an intrinsic
requirement for any type of computation where magic states are required. An
exhaustive and complete analysis of the distillation circuits overhead is presented
in [DSMNT13] and, as a consequence, the present ICM resource analysis is a
continuation of that work.
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Require: Circuit C composed from {Tof foli, CNOT, H, P, T}
: Circuit CICM + C

: Replace in CICM the Toffoli gates with their decomposition (Figure [l or Figure
: Replace in CICM the H gates with PV P

: forall P gates in CICM

Introduce the ancilla a;, below the qubit having P
Construct the circuit for the teleported P gate

Move all the gates following the initial P onto a,

: endfor

: forall V gates in CICM

10:  Introduce the ancilla a, below the qubit having V'

11:  Construct the circuit for the teleported V gate

12:  Move all the gates following the initial V' onto a,

13: endfor

14: forall T gates in CICM

15:  Introduce the ancilla a. below the qubit having T'

16: Construct the circuit for the teleported T' gate

17: Introduce 4 ancillae below the previous ancilla

18:  Construct the selective destination circuit where a. corresponds to the first qubit,
and sz and s4 are the third and fourth qubits respectively

19:  Construct the selective source circuit where s3 corresponds to the first qubit,
s4 to the second qubit, and aey¢ is the third qubit

20: Move all the gates following the initial 7" onto the ancilla agqyt

21: endfor

22: return CICM

3 Discussion

The ICM representation of an arbitrary circuit prepared into a fault-tolerant
manner will not affect its properties. Therefore, fault-tolerance statistics will
not be discussed. The results of executing the implementation of Algorithm [T on
circuits from the RevLib benchmark are presented in Table [T The EQ circuits
consisted of gates from the set {CNOT, C-V,C-V} and the NCT circuits from
the set { Toffoli, CNOT, X }. The best-case non-ICM representation consists of
the teleportation-based gate construction where no P corrections is required for
the T gate. The worst-case non-ICM scenario assumed that all the T gates re-
quire the P correction. For other types of gates the corrections can be tracked
through the circuit [PDNP14], but tracking is not possible for the probabilistic
P-correction (see Section [2.1)). In order to illustrate the benefit of the ICM rep-
resentation the time required for executing the critical path of the decomposed
circuits was computed. The model presumed a time cost of 10 for initialisations,
and a cost of 1 for the CNOTs and the measurements.

It can be seen that the time required by ICM circuits is predictable and better
than the worst-case time of circuits before transformation. Note that longer time
translates to higher decoherence and more stringent requirements on quantum
error-correction.
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Table 1: Comparison betweeen non-ICM and ICM representation

Original circuit Fault-tolerant circuit
Best-Case Non-ICM [Worst-Case Non-ICM ICM
Circuit Qub. X C-X Toff. C-V C—V'r Ancilla CNOT Time|Ancilla CNOT Time|Ancilla CNOT Time
EQ/0410184_170 14 8 33 0 17 16 297 396 255 297 495 736 693 891 435
EQ/3.17.15 3 1 3 0 2 4 54 69 56 54 87 177 126 159 100
EQ/add16-175 49 0 32 0 48 16 576 736 287 576 928 1013 1344 1696 551
EQ/add32.185 97 0 64 0 96 32 1152 1472 543 1152 1856 1973 2688 3392 1063
EQ/add64.186 193 0 128 0 192 64 2304 2944 1055 2304 3712 3893 5376 6784 2087
EQ/add8.173 25 0 16 0 24 8 288 368 159 288 464 533 672 848 295
EQ/c2.182 35 15 121 0 116 53 1521 1980 366 1521 2487 1172 3549 4515 661
EQ/decod24-v0_40 4 1 5 0 2 1 27 38 40 27 47 95 63 83 60
EQ/decod24-v1_42 4 1 5 0 2 1 27 38 41 27 47 87 63 83 59
EQ/decod24-v2_44 4 1 5 0 1 2 27 38 41 27 47 95 63 83 60
EQ/decod24-v3_46 4 9 6 0 1 2 27 39 42 27 48 96 63 84 61
EQ/fredkin_5 3 9 4 0 1 2 27 37 41 27 46 94 63 82 59
EQ/graycode6.48 6 0 5 0 0 0 0 5 16 0 5 16 0 5 16
EQ/miller_12 3 9 5 0 1 2 27 38 42 27 47 95 63 83 60
EQ/peres-8 3 4] 1 0 1 2 27 34 38 27 43 92 63 79 57
EQ/toffoli_1 3 0 2 0 2 1 27 35 38 27 44 92 63 80 57
EQ/toffoli_double_3| 4 0 4 0 2 1 27 37 38 27 46 94 63 82 59
NCT/0410184-169 14 8 27 11 0 0 297 412 248 297 511 788 693 907 431
NCT/add16-174 49 0 32 32 0 0 864 1152 440 864 1440 1514 2016 2592 807
NCT/add32.183 97 0 64 64 0 0 1728 2304 840 1728 2880 2938 4032 5184 1559
NCT/add64.184 193 0 128 128 0 9] 3456 4608 1640 3456 5760 5786 8064 10368 3063
NCT/add8-172 25 0 16 16 ] 0 432 576 240 432 720 802 1008 1296 431
NCT/c2.181 35 18 35 63 o] 0 1701 2240 345 1701 2807 1177 3969 5075 631
NCT/cnt3-5-180 16 0 5 10 ] 0 270 355 60 270 445 186 630 805 102
NCT/graycode6.47 6 0 5 0 0 0 0 5 16 o] 5 16 0 5 16
NCT/ham?7.106 7 0 19 6 0 0 162 229 145 162 283 441 378 499 245

3.1 Example

The systematic transformations of the T" gate and of the controlled-V gate de-
composition from Fig. [2b|are presented after applying Algorithm[I]and obtaining
a circuit composed from UGS (see Section . The ICM representation of the
T gate (Fig.[6) takes the |ing) qubit, and after performing the CNOT with the
|A) ancilla, selectively teleports (the leftmost group of gates) the intermediary
state to either the fourth or the fifth qubit.

The measurement of the first qubit (Z;) is followed by either the measurement
pattern Zs X3 if the result of the teleported T needs a P correction, or the
measurement pattern XsZ3 if the result was correct up to Pauli corrections. The
correctness of the teleported gate application is indicated by the measurement
result. Applying the Z; X3 pattern teleports the intermediary state on the output
qubit marked by |outg), and the fourth and fifth qubits are measured using X4 Zs.
Otherwise, the measurement Z4 X5 will result in teleporting the state of the fifth
qubit on the sixth qubit. The measurement of specific qubit groups depends on
the results of previous measurements.

The controlled-V gate ICM representation (Fig. after applying Algorithm
has the input states ¢;;, (control) and t;, (target) and outputs ¢yt and toy¢. The
individual decomposition of the single-qubit gates from Fig.|2b|is highlighted by
the dashed bounding boxes. The boxes containing three CNOTs are implemen-
tations of the Hadamard gate where for each constituent sub-gate a CNOT and
a |Y)-qubit are used. The ancillae introduced by the ICM transformation are
affecting the distance between the control and the target of the initial CNOTs
(not marked by bounding boxes). The order of the measurements is dictated
by the temporal order of the bounding boxes, meaning that the measurements
implementing the leftmost 7" and H can be applied in parallel. Afterwards, the
measurements associated to the middle bounding boxes can be again executed
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lino) |ing) |ing)
|A) ‘f jl Z/X 14) . |4) —-7r= / X,Z,
|0) X/Z Yo 0) xX0)

) | [0) b i x
V) — Fe=(x/2 v) ) — e AR
) I ! ‘Z/X X4Zs ) I ' '/ Z4Xs
+ —l . [+) " + e — Z
|0) %%J‘— louto)  |0) ———— - outo) 0) %%L |outo)
(a) (b)

Figure 6: a) The ICM version of the T gate [Fow12]; b) The arrows sketch the
information flow between the ancillas: a P gate correction is the result of the
Z X3 X475 measurement pattern, and the XoZ37, X5 measurement pattern is
used if the teleported T gate application was correct.

in parallel. Finally, the last Hadamard gate from the initial circuit is applied by
measuring the last three qubits.

4 Conclusion

The usual assumptions made for quantum optimisation techniques do not neces-
sarily hold for the fault-tolerant circuits because of their inherent dynamicity. A
regular representation of quantum and reversible circuits was presented starting
from the fault-tolerant implementation of quantum circuits. The ICM represen-
tation is a consequence of the results presented in [FowI12/PDNP14] and has the
potential, when combined with the synthesis method from [AMMRI3/AMMTI4],
to be used for future circuit optimisation techniques.

The results indicate that, while making a quantum circuit fault-tolerant sig-
nificantly increases its gate count and the number of required ancilla qubits,
the ICM representation outperforms direct mapping without enforcing the ICM
condition with respect to both predictability and worst-case execution time. The
major advantage of this representation is that it produces a deterministic circuit
description for a higher level circuit. A deterministic description is essential to
allow for more global circuit optimisations in various error corrected implemen-
tations. Future work will investigate quantum circuit synthesis, optimisation and
validation techniques based on the ICM representation.
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