Skip to main content

Evaluation of Liquefaction Potential of Soil Based on Shear Wave Velocity Using Multi-Gene Genetic Programming

  • Chapter

Abstract

In this chapter, liquefaction potential of soil is evaluated within deterministic as well as probabilistic framework based on the post-liquefaction shear wave velocity (V s) measurement data using a soft computing technique, multi-gene genetic programming (MGGP), which is a variant genetic programming (GP). On the basis of the developed limit state function by the MGGP, a mapping function is presented to correlate probability of liquefaction (P L) with factor of safety (F s) against liquefaction using Bayesian theory of conditional probability. Two examples are presented to compare the developed MGGP-based deterministic as well as probabilistic methods with those of available artificial neural network (ANN)-based methods. The findings from the above two examples confirm that MGGP-based methods are more accurate than the ANN-based methods in predicting the liquefied as well as non-liquefied cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alavi, A. H., Aminian, P., Gandomi, A. H., and Esmaeili, M. A. (2011). “Genetic-based modeling of uplift capacity of suction caissons.” Expert Systems with Applications, 38, 12608–12618.

    Article  Google Scholar 

  • Alavi, A. H., and Gandomi, A. H. (2012). “Energy-based numerical models for assessment of soil liquefaction.” Geoscience Frontiers, 3(4), 541–555.

    Google Scholar 

  • Andrus, R. D., and Stokoe, K. H. (1997). “Liquefaction resistance based on shear wave velocity.” Proc., NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Tech. Rep. NCEER-97-0022, T. L. Youd and I. M. Idriss, eds., Nat. Ctr. for Earthquake Engrg. Res., State University of New York at Buffalo, Buffalo, 89–128.

    Google Scholar 

  • Andrus, R. D., and Stokoe, K. H. (2000). “Liquefaction resistance of soils from shear-wave velocity.” Journal of Geotechnical and Geoenvironmental Engineering, 126 (11), 1165–1177.

    Google Scholar 

  • Andrus, D.A., P. Piratheepan, B.S. Ellis, J. Zhang, and C.H. Juang (2004). “Comparing Liquefaction Evaluation Methods Using Penetration-VS Relationships.” Soil Dynamics and Earthquake Engineering, 24(9–10), 713–721.

    Google Scholar 

  • Baziar, M. H., and Jafarian, Y. (2007). “Assessment of liquefaction triggering using strain energy concept and ANN model: Capacity Energy.” Soil Dynamics and Earthquake Engineering, 27, 1056–1072.

    Article  Google Scholar 

  • Becker, D.E. (1996). “Eighteenth Canadian Geotechnical Colloquium: Limit states Design for foundations, Part I. An overview of the foundation design process.” Canadian Geotechnical Journal, 33, 956–983.

    Article  Google Scholar 

  • Bierschwale, J. G., and Stokoe, K. H. (1984). “Analytical evaluation of liquefaction potential of sands subjected to the 1981 Westmorland earthquake.” Geotech. Engrg. Report 95-663, University of Texas, Austin, Texas.

    Google Scholar 

  • Das, S. K. and Basudhar, P. K. (2008). “Prediction of residual friction angle of clays using artificial neural network.” Engineering Geology, 100 (3–4), 142–145.

    Google Scholar 

  • de Alba, P., Baldwin, K., Janoo, V., Roe, G., and Celikkol, B. (1984). “Elastic-wave velocities and liquefaction potential.” Geotech. Testing J., 7(2), 77–87.

    Google Scholar 

  • Dobry, R., Ladd, R. S., Yokel, F. Y., Chung, R. M., and Powell, D. (1982).Prediction of Pore Water Pressure Buildup and Liquefaction of Sands during Earthquakes by the Cyclic Strain Method. National Bureau of Standards, Publication No. NBS-138, Gaithersburg, MD.

    Google Scholar 

  • Gandomi, A. H., and Alavi, A. H., (2012a). “A new multi-gene genetic programming approach to nonlinear system modeling, Part I: materials and structural Engineering Problems.” Neural Computing and Application, 21 (1), 171–187.

    Article  Google Scholar 

  • Gandomi, A. H., and Alavi, A. H. (2012b). “A new multi-gene genetic programming approach to nonlinear system modeling, Part II: Geotechnical and Earthquake Engineering Problems.” Neural Computing and Application, 21 (1), 189–201.

    Article  Google Scholar 

  • Gandomi, A. H., Yun, G. J., and Alavi, A. H. (2013a). An evolutionary approach for modeling of shear strength of RC deep beams. Materials and Structures, 46(12), 2109–2119

    MathSciNet  Google Scholar 

  • Gandomi, A. H, Fridline, M. M., and Roke, D. A. (2013b). “Decision Tree Approach for Soil Liquefaction Assessment.” The Scientific World Journal, 2013, 1–8.

    Article  Google Scholar 

  • Gandomi, M., Soltanpour, M., Zolfaghari, M. R., and Gandomi, A. H. (2014). “Prediction of peak ground acceleration of Iran’s tectonic regions using a hybrid soft computing technique.” Geoscience Frontiers, 1–8.

    Google Scholar 

  • Giustolisi, O., Doglioni, A., Savic, D. A., and Webb, B.W. (2007). “A multi-model approach to analysis of environmental phenomena.” Environmental Modelling and Software, 5, 674–682.

    Article  Google Scholar 

  • Goh, A. T. C. (1994). “Seismic liquefaction potential assessed by neural networks.” Journal of Geotechnical Engineering, 120 (9), 1467–1480.

    Google Scholar 

  • Goh, A. T. C. (2002). “Probabilistic neural network for evaluating seismic liquefaction potential.” Canadian Geotechnical Journal, 39, 219–232.

    Article  Google Scholar 

  • Goh, T. C., and Goh, S. H. (2007). “Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data.” Journal of Computers and Geomechanics., 34, 410–421.

    Article  Google Scholar 

  • Haldar, A., and Tang, W. H. (1979). “Probabilistic evaluation of liquefaction potential.” Journal of Geotechnical Engineering Division, ASCE, 105(GT2), 145–163.

    Google Scholar 

  • Hanna, A. M., Ural, D., and Saygili, G. (2007). “Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data.” Soil Dynamics and Earthquake engineering, 27, 521–540.

    Article  Google Scholar 

  • Javadi, A. A., Rezania, M., and Nezhad, M. M. (2006). “Evaluation of liquefaction induced lateral displacements using genetic programming.” Journal of Computers and Geotechnics, 33, 222–233.

    Google Scholar 

  • Juang, C. H., Rosowsky D. V., and Tang, W. H. (1999). “Reliability based method for assessing liquefaction potential of soils.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 125 (8), 684–689.

    Google Scholar 

  • Juang, C. H., and Chen, C. J., (2000) “A Rational Method for development of limit state for liquefaction evaluation based on shear wave velocity measurements.” International Journal for Numerical and Analytical methods in Geomechanics, 24, 1–27.

    Article  Google Scholar 

  • Juang, C. H., Chen, C. J., Jiang, T., and Andrus, R. D. (2000). “Risk-based liquefaction potential evaluation using standard penetration tests.” Canadian Geotechnical Journal, 37, 1195–1208.

    Article  Google Scholar 

  • Juang, C. H., Chen, C. J., and Jiang, T. (2001). “Probabilistic framework for liquefaction potential by shear wave velocity.” Journal of Geotechechnical and Geoenvironmental Engineering, ASCE, 127 (8), 670–678.

    Google Scholar 

  • Juang, C. H., Yang, S. H., and Yuan, H. (2005).Model uncertainty of shear wave velocity-based method for liquefaction potential evaluation.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 131 (10), 1274–1282.

    Google Scholar 

  • Juang, C. H., Fang, S. Y., and Khor, E. H. (2006). “First order reliability method for probabilistic liquefaction triggering analysis using CPT.” Journal of Geotechechnical and Geoenvironmental Engineering ASCE, 132 (3), 337–350.

    Google Scholar 

  • Kayen, R. E., Mitchell, J. K., Seed, R. B., Lodge, A., Nishio, S., and Coutinho, R. (1992). “Evaluation of SPT-, CPT-, and shear wave-based methods for liquefaction potential assessment using Loma Prieta data.” Proc., 4th Japan-U.S. Workshop on Earthquake Resistant Des. of Lifeline Fac. and Countermeasures for Soil Liquefaction, Tech. Rep. NCEER-92-0019, M. Hamada and T. D. O’Rourke, eds., National Center for Earthquake Engineering Research, Buffalo, Vol. 1, 177–204.

    Google Scholar 

  • Koza, J. R. (1992). Genetic programming: on the programming of computers by natural selection, The MIT Press, Cambridge, Mass.

    MATH  Google Scholar 

  • Kramer, S. L. (1996). Geotechnical earthquake engineering, Pearson Education (Singapore) Pte. Ltd., New Delhi, India.

    Google Scholar 

  • Liao, S. S. C., Veneziano, D., and Whitman, R. V. (1988). “Regression models for evaluating liquefaction probability.” Journal of Geotechnical Engineering Division, ASCE, 114(4), 389–411.

    Google Scholar 

  • MathWorks Inc. (2005), MatLab User’s Manual, Version 6.5, The MathWorks Inc., Natick.

    Google Scholar 

  • Muduli, P. K., and Das, S. K. (2013a). “First order reliability method for probabilistic evaluation of liquefaction potential of soil using genetic programming”. International Journal of Geomechanics, doi:10.1061/(ASCE)GM.1943-5622.0000377.

  • Muduli, P. K., and Das, P. K. (2013b). “SPT-Based Probabilistic Method for Evaluation of Liquefaction Potential of Soil Using Multi- Gene Genetic Programming”. International Journal of Geotechnical Earthquake Engineering, 4(1), 42–60.

    Article  Google Scholar 

  • Muduli, P. K., Das, M. R., Samui, P., and Das, S. K. (2013). “Uplift capacity of suction caisson in clay using artificial intelligence techniques”. Marine Georesources and Geotechnology, 31(4), 375–390.

    Article  Google Scholar 

  • Muduli, P. K., and Das, P. K. (2014a). “Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model.” Acta Geophysica, 62 (3), 529–543.

    Google Scholar 

  • Muduli, P. K., and Das, P. K. (2014b). “CPT-based Seismic Liquefaction Potential Evaluation Using Multi-gene Genetic Programming Approach” Indian Geotech Journal, 44(1), 86–93.

    Article  Google Scholar 

  • Muduli, P. K., Das, P. K., and Bhattacharya, S. (2014). “CPT-based probabilistic evaluation of seismic soil liquefaction potential using multi-gene genetic programming”. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 8(1), 14–28.

    Google Scholar 

  • Olsen, R. S. (1997). “Cyclic liquefaction based on the cone penetration test.” Proceedings of the NCEER Workshop of Evaluation of liquefaction resistance of soils. Technical report No. NCEER-97-0022, T. L. Youd and I. M. Idriss, eds., Buffalo. NY: National center for Earthquake Engineering Research. State University of New York at Buffalo. 225–276.

    Google Scholar 

  • Pal, M. (2006). “Support vector machines-based modeling of seismic liquefaction potential.” Journal of Numerical and Analytical Methods in Geomechanics, 30, 983–996.

    Google Scholar 

  • Rezania, M., and Javadi, A. A. (2007). “A new genetic programming model for predicting settlement of shallow foundations.” Canadian Geotechnical Journal, 44, 1462–1473

    Article  Google Scholar 

  • Robertson, P. K., and Campanella, R. G. (1985). “Liquefaction potential of sands using the CPT.” Journal of Geotechnical Engineering, ASCE, 111(3), 384–403.

    Google Scholar 

  • Robertson, P. K., and Wride, C. E. (1998). “Evaluating cyclic liquefaction potential using cone penetration test.” Canadian Geotechnical journal, 35(3), 442–459

    Google Scholar 

  • Samui, P. (2007). “Seismic liquefaction potential assessment by using Relevance Vector Machine.” Earthquake Engineering and Engineering Vibration, 6 (4), 331–336.

    Article  Google Scholar 

  • Samui.P., and Sitharam, T. G. (2011). “Machine learning modelling for predicting soil liquefaction susceptibility.” Natural Hazards and Earth Sciences, 11, 1–9.

    Google Scholar 

  • Searson, D. P., Leahy, D. E., and Willis, M. J. (2010). “GPTIPS: an open source genetic programming toolbox from multi-gene symbolic regression.” In: Proceedings of the International multi conference of engineers and computer scientists, Hong Kong.

    Google Scholar 

  • Seed H. B., and Idriss, I. M. (1982).Ground Motions and Soil Liquefaction During Earthquakes, Earthquake Engineering Research Institute, Oakland, CA, 134.

    Google Scholar 

  • Seed, H. B., and de Alba, P. (1986). “Use of SPT and CPT tests for evaluating liquefaction resistance of sands.” Proc., Specialty Conf. on Use of In Situ Testing in Geotechnical Engineering, Geotechnical Special Publ. No. 6, ASCE, New York, 281–302.

    Google Scholar 

  • Seed, H. B., and Idriss, I. M. (1971). “Simplified procedure for evaluating soil liquefaction potential.” Journal of the Soil Mechanics and Foundations Division, ASCE, 97(SM9), 1249–1273.

    Google Scholar 

  • Seed, H. B., Idriss, I. M., and Arango, I. (1983). “Evaluation of liquefaction potential using field performance data.” Journal of Geotechnical Engineering Division, ASCE, 109 (3), 458–482.

    Google Scholar 

  • Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. (1985). “Influence of SPT procedures in soil liquefaction resistance evaluations.” Journal of Geotechnical Engineering, ASCE, 111(12), 1425–1445.

    Google Scholar 

  • Stokoe, K. H., II, and Nazarian, S. (1985). “Use of Rayleigh waves in liquefaction studies.” Measurement and use of shear wave velocity for evaluating dynamic soil properties, R. D. Woods, ed., ASCE, New York, 1–17.

    Google Scholar 

  • Stokoe, K. H., II, Roesset, J. M., Bierschwale, J. G., and Aouad, M. (1988). “Liquefaction potential of sands from shear wave velocity.” Proc., 9th World Conf. on Earthquake Engrg., Vol. III, 213–218.

    Google Scholar 

  • Terzaghi, K., and Peck, R.B. (1948). Soil mechanics in engineering practice, 1st Edition, John Wiley & Sons, New York.

    Google Scholar 

  • Tokimatsu, K., and Uchida, A. (1990). “Correlation between liquefaction resistance and shear wave velocity.” Soils and Foundations, Tokyo, 30(2), 33–42.

    Google Scholar 

  • Toprak, S., Holzer, T. L., Bennett, M. J. and Tinsley, J. C. III, (1999). “CPT- and SPT-based probabilistic assessment of liquefaction.” Proceedings 7th U.S.–Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Counter measures against Liquefaction, Seattle, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, N.Y., 69–86.

    Google Scholar 

  • Yang, C.X., L.G. Tham, X.T. Feng, Y.J. Wang, and P.K.K. Lee (2004), Two stepped evolutionary algorithm and its application to stability analysis of slopes, J. Comput. Civil. Eng. 18, 145–153.

    Article  Google Scholar 

  • Youd, T. L., and Nobble, S. K. (1997). “Liquefaction criteria based statistical and probabilistic analysis.” In: Proceedings of NCEER workshop on Evaluation of Liquefaction Resistance of Soils, technical Report No. NCEER-97-0022, State University of New York at Buffalo, Buffalo, New York, 201–216.

    Google Scholar 

  • Youd, T. L., Idriss I. M., Andrus R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Liam Finn, W. D., Harder Jr, L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson III W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B., and Stokoe II, K. H. (2001). “Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127 (10), 817–833.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat Kumar Das .

Editor information

Editors and Affiliations

1 Electronic Supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muduli, P.K., Das, S.K. (2015). Evaluation of Liquefaction Potential of Soil Based on Shear Wave Velocity Using Multi-Gene Genetic Programming. In: Gandomi, A., Alavi, A., Ryan, C. (eds) Handbook of Genetic Programming Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-20883-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20883-1_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20882-4

  • Online ISBN: 978-3-319-20883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics