Skip to main content

Application of Gene-Expression Programming in Hydraulic Engineering

  • Chapter

Abstract

Open-channel hydraulics, probably, is most important branch of water resources engineering. This sub-discipline has vital and critical importance to human history. Complex and highly nonlinear behavior of most problems in hydraulics leads to use various soft computing techniques for their efficient solution. Genetic programming (GP) is relatively one of the new soft computing techniques which have high ability in developing intelligent systems and providing precise functional relationship solutions to complicated problems. Capability of GP in solving many engineering problems, development and application of GP branches has attracted many researchers’ attention. Gene-Expression Programming (GEP) is becoming an important class of GP, which has found extensive applications for hydraulic engineering. GEP is an evolutionary algorithm that mimics biological evolution to model some complicated real world phenomenon. In this book chapter, attempts were made to present a review of application and development of GEP in many hydraulics phenomena. The literature review categorize in various aspects of hydraulic engineering including flow through hydraulic structures, scouring at control structures and stage-discharge rating curve in compound open channels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abril, J.B., and Knight, D.W. 2004. Stage-discharge prediction for rivers in flood applying a depth-averaged model. J. Hydraul. Res., IAHR, 122(6): 616–629.

    Google Scholar 

  • Ackers, P. 1992. Hydraulic design of two-stage channels. Journal of Water and Maritime Engineering, 96, 247–257.

    Google Scholar 

  • Ackers, P. 1993. Flow formulae for straight two-stage channels. J. Hydraul. Res., IAHR, 31(4): 509–531.

    Google Scholar 

  • Atabay, S. 2001. Stage-discharge, resistance and sediment transport relationships for flow in straight compound channels. PhD thesis, the University of Birmingham, UK.

    Google Scholar 

  • Azamathulla, H.Md., and Jarrett, R. 2013. Use of Gene-Expression programming to estimate manning's roughness coefficient for high gradient streams. Water Resources Management, 27(3): 715–729.

    Article  Google Scholar 

  • Azamathulla, H.Md., Ahmad, Z., and AbGhani, A. 2012. Computation of discharge through side sluice gate using gene-expression programming. Irrig. and Drain. Engrg., ASCE, 62(1): 115–119.

    Google Scholar 

  • Azamathulla, H.Md., and Zahiri, A. 2012. Flow discharge prediction in compound channels using linear genetic programming. J. Hydrol. Ser. C, 454(455):203–207.

    Article  Google Scholar 

  • Azamathulla, H.Md., AbGhani, A., Leow, C.S., Chang, C.K., and Zakaria, N.A. 2011. Gene-expression programming for the development of a stage-discharge curve of the Pahang River. Water Resources Management, 25(11): 2901–2916.

    Article  Google Scholar 

  • Azamathulla, H.Md., AbGhani, A., Zakaria, N.A., and Guven, A. 2010. Genetic programming to predict bridge pier scour. J. Hydraul. Eng., ASCE, 136(3): 165–169.

    Google Scholar 

  • Blalock, M.E. and Sturm, T.W. 1981. Minimum specific energy in compound channel. J. Hydraulics Division, ASCE, 107: 699–717.

    Google Scholar 

  • Bormann, N., and Julien, P.Y. 1991. Scour downstream of grade-control structures, J. Hydraul. Eng., ASCE, 117(5): 579–594.

    Google Scholar 

  • Bousmar, D. 2002. Flow modelling in compound channels: momentum transfer between main channel and prismatic or non-prismatic floodplains. PhD Dissertation, Université catholique de Louvain, Belgium. http://dial.academielouvain.be/handle/boreal:4996

  • Bousmar, D. and Zech, Y. 1999. Momentum transfer for practical flow computation in compound channels. J. Hydraul. Eng., ASCE, 125(7), 696–70.

    Google Scholar 

  • Bousmar, D., Wilkin, N., Jacquemart, H. and Zech, Y. 2004. Overbank flow in symmetrically narrowing floodplains. J. Hydraul. Eng., ASCE, 130(4), 305–312.

    Google Scholar 

  • Brameier, M., and Banzhaf, W. 2001. A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evol. Comput., 5: 17–26.

    Article  Google Scholar 

  • Chinnarasri, C., and Kositgittiwong, D. 2006. Experimental investigation of local scour downstream of bed sills. J. Research in Engineering and Technology, Kasetsart University, 3(2):131–143.

    Google Scholar 

  • Chinnarasri, C., and Kositgittiwong, D. 2008. Laboratory study of maximum scour depth downstream of sills. ICE Water Manage., 161(5): 267–275.

    Article  Google Scholar 

  • Chow, V. T. 1959. Open channel hydraulics, McGraw-Hill, London.

    Google Scholar 

  • Fernandes, J.N., Leal, J.B. and Cardoso, A.H. 2012. Analysis of flow characteristics in a compound channel: comparison between experimental data and 1-D numerical simulations. Proceedings of the 10th Urban Environment Symposium, 19: 249–262.

    Google Scholar 

  • Ferreira, C. 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems, 13(2): 87–129.

    MATH  MathSciNet  Google Scholar 

  • Gandomi A.H., and Alavi, A.H., 2011. Multi-stage genetic programming: A new strategy to nonlinear system modeling. Information Sciences, 181(23): 5227–5239.

    Article  Google Scholar 

  • Gandomi A.H., and Alavi, A.H., 2012. A new multi-gene genetic programming approach to nonlinear system modeling. Part II: Geotechnical and Earthquake Engineering Problems. Neural Computing and Applications, 21(1): 189–201.

    Article  Google Scholar 

  • Gandomi, A.H., and Roke, D.A. 2013. Intelligent formulation of structural engineering systems. In: Seventh M.I.T. Conference on Computational Fluid and Solid Mechanics, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Gaudio, R., and Marion, A. 2003. Time evolution of scouring downstream of bed sills. J. Hydraul. Res., IAHR, 41(3): 271–284.

    Google Scholar 

  • Gaudio, R., Marion, A., and Bovolin, V. 2000. Morphological effects of bed sills in degrading rivers. J. Hydraul. Res., IAHR, 38(2): 89–96.

    Google Scholar 

  • Ghodsian, M. 2003. Flow through side sluice gate. J. Irrig. and Drain. Engrg., ASCE, 129(6): 458–463.

    Google Scholar 

  • Guven, A., and Azamathulla, H.Md. 2012. Gene-Expression programming for flip-bucket spillway scour. Water Science & Technology, 65(11): 1982–1987.

    Article  Google Scholar 

  • Guven, A., and Gunal, M. 2008. Genetic programming approach for prediction of local scour downstream of hydraulic structures. J. Irrigation and Drainage Engineering, 134(2): 241–249.

    Article  Google Scholar 

  • Guan, Y. 2003. Simulation of dispersion in compound channels. M.Sc. Thesis in Civil Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.

    Google Scholar 

  • Guven, A., Aytek A., 2009. New approach for stage discharge relationship: gene expression programming. J. Hydrol. Eng., ASCE, 14: 812–820.

    Google Scholar 

  • Haidera, M.A. and Valentine, E.M. 2002. A practical method for predicting the total discharge in mobile and rigid boundary compound channels. International Conference on Fluvial Hydraulics, Belgium, 153–160.

    Google Scholar 

  • Huthoff, F. 2007. Modeling hydraulic resistance of floodplain vegetation. PhD Thesis, Twente University, the Netherland.

    Google Scholar 

  • Huthoff, F., Roose, P.C., Augustijn, D.C.M., Hulscher, S.J.M.H. 2008. Interacting divided channel method for compound channel flow. J. Hydraul. Eng., ASCE, 134(8): 1158–1165.

    Google Scholar 

  • Jarrett, R.D. 1984. Hydraulics of high gradient streams. J. Hydraul. Eng., ASCE, 110(1):1519–1539.

    Google Scholar 

  • Knight, D.W. and Sellin, R.H.J. 1987. The SERC flood channel facility. Journal of Institution of Water and Environment Management, 1(2), 198–204.

    Article  Google Scholar 

  • Knight, D.W. and Demetriou. J.D. 1983. Flood plain and main channel flow interaction. J. Hydraulic Division, ASCE, 109(8): 1073–1092.

    Google Scholar 

  • Knight, D.W., Shiono, K., and Pirt, J. 1989. Predictions of depth mean velocity and discharge in natural rivers with overbank flow. International Conference on Hydraulics and Environmental Modeling of Coastal, Estuarine and River Waters, England, 419–428.

    Google Scholar 

  • Lai, S.H. and Bessaih, N. 2004. Flow in compound channels. 1st International Conference on Managing Rivers in the 21st Century, Malaysia, 275–280.

    Google Scholar 

  • Lambert, M.F. and Myers, R.C. 1998. Estimating the discharge capacity in straight compound channels. Water, Maritime and Energy, 130, 84–94.

    Article  Google Scholar 

  • Lambert, M.F. and Sellin, R.H.J. 1996. Discharge prediction in straight compound channels using the mixing length concept. Journal of Hydraulic Research, IAHR, 34, 381–394.

    Article  Google Scholar 

  • Lenzi, M. A., Marion, A., Comiti, F., and Gaudio, R. 2002. Local scouring in low and high gradient streams at bed sills. J. Hydraul. Res., IAHR, 40(6): 731–739.

    Google Scholar 

  • Lenzi, M.A., and Comiti, F. 2003. Local scouring and morphological adjustments in steep channels with check-dams sequences. Geomorphology, 55: 97–109.

    Google Scholar 

  • Lenzi, M.A., Marion, A., and Comiti, F. 2003. Interference processes on scouring at bed sills. Earth Surface Processes and Landforms, 28(1): 99–110.

    Article  Google Scholar 

  • Lenzi, M.A., Comiti, F., and Marion, A. 2004. Local scouring at bed sills in a mountain river: Plima river, Italian alps. J. Hydraul. Eng., ASCE, 130(3):267–269.

    Google Scholar 

  • Liggett, J.A. 2002. What is hydraulic engineering? J. Hydraul. Eng., ASCE, 128(1): 10–19.

    Google Scholar 

  • Marion, A., Lenzi, M.A., and Comiti, F. 2004. Effect of sill spacing and sediment size grading on scouring at grade-control structures. Earth Surface Processes and Landforms, 29(8): 983–993.

    Article  Google Scholar 

  • Martin, L. A. and Myers, R. C. 1991. Measurement of overbank flow in a compound river channel. Journal of Institution of Water and Environment Management, 645–657.

    Google Scholar 

  • Mostkow, M. A. 1957. A theoretical study of bottom type water intake. La Houille Blanche, 4: 570–580.

    Article  Google Scholar 

  • Moussa, Y.A.M. 2013. Modeling of local scour depth downstream hydraulic structures in trapezoidal channel using GEP and ANNs. Ain Shams Engineering Journal, 4(4): 717–722.

    Article  MathSciNet  Google Scholar 

  • Mujahid, K., Azamathulla, H.Md., Tufail, M. and AbGhani, A. 2012. Bridge pier scour prediction by gene expression programming. Proceedings of the Institution of Civil Engineers Water Management, 165 (WM9):481–493.

    Google Scholar 

  • Myers, R.C. and Lyness. J.F. 1997. Discharge ratios in smooth and rough compound channels. J. Hydraul. Eng., ASCE, 123(3): 182–188.

    Google Scholar 

  • Najafzadeh, M., Barani, Gh-A., Hessami Kermani, M.R., 2013. GMDH Network Based Back Propagation Algorithm to Predict Abutment Scour in Cohesive Soils. Ocean Engineering, 59: 100–106.

    Article  Google Scholar 

  • Ojah, C.S.P., Damireddy, S. 1997. Analysis of flow through lateral slot. J. Irrig. and Drain. Engrg., ASCE, 123(5): 402–405.

    Google Scholar 

  • Oltean, M., and Grosan, C. 2003. A comparison of several linear genetic programming techniques. Complex Syst., 14(1):1–29.

    MathSciNet  Google Scholar 

  • Onen, F. 2014. Prediction of scour at a side-weir with GEP, ANN and regression models. Arab J. Sci Eng, 39: 6031–6041.

    Google Scholar 

  • Panda, S. 1981. Characteristics of side sluice flow. ME thesis, University of Roorkee, Roorkee, India.

    Google Scholar 

  • Prasuhn, A. 1987. Fundamentals of hydraulic engineering. Holt, Rinehart, and Winston, New York, USA.

    Google Scholar 

  • Roberson, J.A., Cassidy, J.J., and Chaudhry, M.H. 1998. Hydraulic Engineering. John Wiley and Sons, Inc., New York, USA.

    Google Scholar 

  • Sattar, M.A. 2014. Gene expression models for the prediction of longitudinal dispersion coefficients in transitional and turbulent pipe flow. J. Pipeline Systems Engineering and Practice, ASCE, 5(1):.

    Google Scholar 

  • Sharifi, S. 2009. Application of evolutionary computation to open channel flow modeling. PhD Thesis in Civil Engineering, University of Birmingham, 330 p.

    Google Scholar 

  • Shiono, K. and Knight, D.W. 1991. Turbulent open-channel flows with variable depth across the channel. J. Fluid Mechanics, 222: 617–646.

    Google Scholar 

  • Swamee, P.K., Pathak, S.K., Sabzeh Ali, M. 1993. Analysis of rectangular side sluice gate. J. Irrig. and Drain. Engrg., ASCE, 119(6): 1026–1035.

    Google Scholar 

  • Tarrab, L., and Weber, J.F. 2004. Transverse mixing coefficient prediction in natural channels. Computational Mechanics, 13: 1343–1355.

    Google Scholar 

  • Tregnaghi, M. 2008. Local scouring at bed sills under steady and unsteady conditions. PhD Thesis, University of Padova, Italy.

    Google Scholar 

  • Unal, B., Mamak, M., Seckin, G., and Cobaner, M. 2010. Comparison of an ANN approach with 1-D and 2-D methods for estimating discharge capacity of straight compound channels. Advances in Engineering Software, 41: 120–129.

    Article  MATH  Google Scholar 

  • Van Prooijen, B.C., Battjes, J.A. And Uijttewaal, W.S.J. 2005. Momentum exchange in straight uniform compound channel flow. J. Hydraul. Eng., ASCE, 131:175–183.

    Google Scholar 

  • Wang, C.Y., Shih, H.P, Hong, J.H. and Rajkumar, V.R. 2013. Prediction of bridge pier scour using genetic programming. J. Marine Science and Technology, 21(4), 483–492.

    Google Scholar 

  • Whitley, D. 1991. Fundamental principles of description in genetic search. Foundations of genetic algorithms. G. Rawlings, ed., Morgan Kaufmann.

    Google Scholar 

  • Wormleaton, P.R. and Merrett, D.J. 1990. An improved method of calculation for steady uniform flow in prismatic main channel/floodplain sections. J. Hydraul. Res., IAHR, 28: 157–174.

    Google Scholar 

  • Yang, K., Liu, X., Cao, S., and Huang, E. 2014. Stage-discharge prediction in compound channels. J. Hydraul. Eng., ASCE, 140(4).

    Google Scholar 

  • Zahiri, A., Azamathulla, H.Md., and Ghorbani, Kh. 2014. Prediction of local scour depth downstream of bed sills using soft computing models. T. Islam et al. (eds.), Computational Intelligence Techniques in Earth and Environmental Sciences, Springer, Chapter 11, 197–208.

    Google Scholar 

  • Zakaria, N.A, Azamathulla, H.Md, Chang, C.K and AbGhani, A. 2010. Gene-Expression programming for total bed material load estimation – A Case Study. Science of the Total Environment, 408(21): 5078–5085.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zahiri .

Editor information

Editors and Affiliations

1 Electronic Supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zahiri, A., Dehghani, A.A., Azamathulla, H.M. (2015). Application of Gene-Expression Programming in Hydraulic Engineering. In: Gandomi, A., Alavi, A., Ryan, C. (eds) Handbook of Genetic Programming Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-20883-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20883-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20882-4

  • Online ISBN: 978-3-319-20883-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics