Skip to main content

Differential Optical Flow Estimation Under Monocular Epipolar Line Constraint

  • Conference paper
  • First Online:
Book cover Computer Vision Systems (ICVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9163))

Included in the following conference series:

Abstract

In this paper, a new method is presented to use the epipolar constraint for the estimations of optical flows. We derive the necessary formulation to add the epipolar constraint in terms of optical flow components and force the components to transform points from the first frame to the next consecutive frame such that the points lie on their correspondent epipolar lines. In this work, no smoothness term is utilized and the performance of the proposed method is evaluated based only on data terms. We conducted different evaluations using two different point matching methods (SIFT and Lucas-Kanade) and used them in two different fundamental matrix estimation methods required to calculate epipolar line coefficients. It is demonstrated that epipolar constraint yields noticeable improvements almost in all of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, Y.H., Martinez, A.M., Kak, A.C.: Robust motion estimation under varying illumination. Image Vision Comput. 23, 365–375 (2005)

    Article  Google Scholar 

  2. Mileva, Y., Bruhn, A., Weickert, J.: Illumination-robust variational optical flow with photometric invariants. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 152–162. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Mueller, T., Rabe, C., Rannacher, J., Franke, U., Mester, R.: Illumination-robust dense optical flow using census signatures. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 236–245. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Molnar, J., Chetverikov, D., Fazekas, S.: Illumination-robust variational optical flow using cross-correlation. Comput. Vis. Image Underst. 114, 1104–1114 (2010)

    Article  Google Scholar 

  6. Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: CVPR, pp. 2464–2471. IEEE (2010)

    Google Scholar 

  7. Drulea, M., Nedevschi, S.: Motion estimation using the correlation transform. IEEE Trans. Image Process. 22, 3260–3270 (2013)

    Article  Google Scholar 

  8. Rashwan, H.A., Mohamed, M.A., García, M.A., Mertsching, B., Puig, D.: Illumination robust optical flow model based on histogram of oriented gradients. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 354–363. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Mohamed, M.A., Rashwan, H.A., Mertsching, B., Garcia, M.A., Puig, D.: Illumination-robust optical flow using local directional pattern. IEEE Trans. Circuits Syst. Video Technol. 24, 1–9 (2014)

    Article  Google Scholar 

  10. Mohamed, M.A., Rashwan, H.A., Mertsching, B., Garcia, M.A., Puig, D.: On improving the robustness of variational optical flow against illumination changes. In: Proceedings of the 4th ACM/IEEE International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Stream, pp. 1–8. ACM (2013)

    Google Scholar 

  11. Hartley, R.I.: In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 19, 580–593 (1997)

    Article  Google Scholar 

  12. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University, Cambridge (2004)

    Book  MATH  Google Scholar 

  13. Yamaguchi, K., McAllester, D.A., Urtasun, R.: Robust monocular epipolar flow estimation. In: CVPR, pp. 1862–1869. IEEE (2013)

    Google Scholar 

  14. Lukas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Image Understanding Workshop (1981)

    Google Scholar 

  15. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Bouguet, J.Y.: Pyramidal implementation of the Lucas Kanade feature tracker. Intel Corporation, Microprocessor Research Labs (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mohamed, M.A., Mirabdollah, M.H., Mertsching, B. (2015). Differential Optical Flow Estimation Under Monocular Epipolar Line Constraint. In: Nalpantidis, L., Krüger, V., Eklundh, JO., Gasteratos, A. (eds) Computer Vision Systems. ICVS 2015. Lecture Notes in Computer Science(), vol 9163. Springer, Cham. https://doi.org/10.1007/978-3-319-20904-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20904-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20903-6

  • Online ISBN: 978-3-319-20904-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics