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Abstract. Falls are particularly detrimental and prevalent in the aging popu-
lation. To diagnose the cause of a fall current medical practice relies on
expensive hospital admissions with many bulky devices that only provide
limited diagnostic information. By utilizing the latest wearable technology, the
Wearable Multimodal Monitoring System (WMMS) presented here offers a
better solution to the problem of fall diagnostics and has the potential to predict
these falls in real-time in order to prevent falls or, at least, mitigate their severity.
This highly integrated system has been designed for real-life long-term moni-
toring of movement disorder patients. It contains multiple wearable and wireless
biosensors that simultaneously and continuously monitor cardiovascular, auto-
nomic, motor, and electroencephalographic (EEG) activity, in addition to
receiving critical patient feedback about symptoms. Initial pilot data show that
the system is comfortable and easy to use, and provides high quality data
streams capable of detecting near-falls and other motor disturbances.
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1 Introduction

One in three adults aged 65 and older fall each year [1]. Older adults are hospitalized
for fall-related injuries five times more often than they are for injuries from other causes
[2]. With the population aging, the number of falls and the related costs will increase.
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Falls are more frequent in patients with advanced Parkinson’s disease (PD) and they
occur at even earlier stages and more frequently in patients with atypical parkinsonian
disorders [3-5]. About half of PD patients who fall will require medical care for
fall-related injuries, and many never recover to their pre-fall motor and independence
baseline [4, 6].

Current medical practice for diagnosing falls relies on expensive hospital admis-
sions to determine if cardiologic, blood pressure, balance, gait, or seizure disturbances
caused a fall. Patients are connected for short periods to bulky, single-function devices
that can provide only limited diagnostic information as this information is confined to
the hospital setting after a fall has occurred. Currently, advanced technologies may
allow using inexpensive and wearable multisensor devices on outpatients to determine
the causes of their near-falls and falls as well as collect other critical diagnostic
information in a daily life setting.

Only recently has technology evolved to allow scientists to continuously record
multiple data streams from the body in everyday life in a comfortable and unobtrusive
way. This technology has been used for real-world applications such as stress moni-
toring [7], as well as gait and vital sign assessment and fall detection (see review [8]).
The Wearable Multimodal Monitoring System (WMMS) improves upon previous
technology by integrating and synchronizing multiple data streams in real-time while
also recording valuable patient feedback via a smartphone. The system is an extension
of on-going work to build a Multi-Aspect Real-world Integrated Neuroimaging
(MARIN) system to study stress [9, 10]. The WMMS takes advantage of the original
MARIN system architecture by utilizing some of the same devices, and also includes
new devices and mobile applications specifically engineered for the study of falls in
movement disorder patients. Our multimodal monitoring system is aimed to diagnose
the causes of falls and near-falls so appropriate treatments can be undertaken to prevent
subsequent occurrences.

2 The Wearable Multimodal Monitoring System (WMMS)

The Wearable Multimodal Monitoring System (WMMYS) is a highly integrated system
designed for real-life long-term monitoring of patients susceptible to falls. It uses
several state-of-the-art microelectronics and communication technologies in a mobile,
wireless data collection and computing platform with multiple, wearable biosensors
that simultaneously and continuously monitor cardiovascular, autonomic, motor, and
neurological activity in the daily life environment. We chose these modalities as they
can capture the most common causes of intrinsic falls unrelated to accidents. In
addition, the system requests and receives critical patient feedback about symptoms
and other outcome measures. It is envisioned that the data collected by this system will
be suitable for the creation of algorithms that can go beyond diagnosis, to the pre-
diction of falls. These algorithms could then be implemented in next-generation
systems to alert the patient when conditions and behaviors exist that increase their risk
of falling.
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2.1 Components

Peripheral Monitoring Devices. The WMMS contains five commercially available
devices (Fig. 1). (1) The Zephyr Bioharness 3 is a chest band that is capable of
monitoring heart rate, EKG/R-R intervals, respiration rate, posture, and 3-axis accel-
erations. The data will allow us to determine whether abnormal heart rhythms or heart
ischemia cause patient symptoms (lightheadedness or syncope) and/or falls. (2) The
Empatica E3 is a small wrist-worn device containing a 3-axis accelerometer and optical
temperature sensor, as well as an electrodermal activity sensor and a photopletis-
mography sensor, which measure physiological arousal that will be used to determine
autonomic disturbances. (3) The MINDO 4-channel wireless EEG Headset is a
4-channel wireless EEG monitoring system equipped with dry electrodes to monitor
syncope-related decrease or seizure-related increase in brain activity. The headset can
provide up to 256 samples per second from each EEG channel. (4) The BodyDyn
10-DOF Wireless Body Motion and Posture Monitor is the prototype of a wearable
body motion and posture monitoring system that will be used to determine if gait
disturbances are the possible cause of a fall or near-fall. It will be also used to deter-
mine whether motor disturbances such as tremors, dyskinesias, dystonia and freezing
are possible causes of falls and near-falls. Each device can provide up to 100 samples
per second of 3D linear accelerations data points, 3D angular acceleration data points,
3D magnetic flux, and barometric pressure. These small, unobtrusive sensors will be
affixed to clothing or other devices at locations including the wrists, chest, waist, back,
and ankles. While the four devices outlined above stream data wirelessly to the
smartphone in real-time, (5) the HealthStats BPro ABPM Watch records data locally
and those data are then added to the other datastreams post hoc. The BPro is an
ambulatory blood pressure monitoring (ABPM) system in the form of a wristwatch
used to measure blood pressure (BP) and heart rate (HR) and to determine whether
drops in BP or HR can cause falls and near-falls (orthostatic hypotension). It uses
modified applanation tonometry to measure the pressure pulses detected at the radial
artery in the wrist every 5 to 15 min.

Handheld Electronic Device. An Android smartphone serves both as the data hub for
the sensors and the graphic user interface for the patient. The WMMS uses several
Android-based applications. The main widget provides an event monitoring panel which
allows the patient to log notes for salient events and answer related questions. Addi-
tionally, the WMMS includes three interactive applications designed to assess symptom
severity and a suite of inventories that gauges non-motor functions (i.e., mood).

Event Monitoring Panel. The event monitoring panel is a widget that is available to the
patient when the phone is turned on. It includes six different buttons that the patient can
select to log salient events (right center of Fig. 1): falls and near-falls, medication, loss
of consciousness, meals, dizziness, and tremors or dyskinesias. When selecting a
button, the patient is directed to answer questions about the event. Each button follows
a pathway of questions designed by clinicians to capture important associated infor-
mation in a uniform way. This information will be helpful in the development of fall
prediction algorithms, because it provides subjective information that adds context to
the continuous physiological data streams.
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Fig. 1. The Wearable Multimodal Monitoring System (WMMS)
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Applications. In order to collect data about symptoms throughout the day, we have
developed three interactive apps that can be easily accessed by the patient. The first app
is our mobile version of a force transducer based tapping task. The parameters replicate
those of a study of Huntington’s Disease patients where outcome measures (variability
of tapping intervals and tap frequency) were found to be sensitive enough to distinguish
between carriers (pre-manifest) and age-matched healthy controls [11]. This task has
also been performed with PD patients with success [12]. The task is performed via a
touch screen and does not utilize a force transducer; however, we expect that this
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mobile setup will still be sensitive enough to quantify motor impairment. We will
compare this new app with the Movement Disorder Society-United Parkinson Disease
Rating Scale (MDS-UPDRS) tapping score. The second app developed for the WMMS
is a Baseline Measurements App that guides the user visually and verbally through a
series of movements taken from clinical motor scales. It then creates an output file that
time stamps each movement start and end to allow for easy data analysis of the time
synced multimodal data streams. The third app is an Everyday Activity App which
follows the same design as the Baseline Measurement App, but it asks the user to
perform everyday activities such as walking around a room and typing on a keyboard.
Both of these movement apps will allow us to explore how the time-synced multim-
odality data tracks motor function in the clinic and at home during clinically relevant
and everyday actions.

Inventory Suite. The Inventory Suite contains questionnaires validated in the literature
for the study of non-motor symptoms such as mood. These inventories have been
translated to an easy to use mobile format. The suite will be deployed at least once a
day, but some shorter inventories will be repeated throughout the day. It contains the
Stress Visual Analog Scale, Fatigue Visual Analog Scale, Self-Assessment Manikin,
Pittsburgh Sleep Diary, Beck Depression Inventory, and Spielberger State Anxiety
Inventory. The data collected from these questionnaires will be used to relate different
perceived states with physiological data and will provide potentially important pre-
dictive information for falls.

3 Pilot Study Results

To show feasibility and to evaluate the WMMS we collected preliminary data from six
healthy young controls (36 + 9 yrs.) at the U.S. Army Research Laboratory (ARL).
Participants spent three hours interacting with the software developed for the WMMS
and four hours of their normal work day wearing the system. We also collected pre-
liminary data from three patients and one age-matched healthy control participant
(65.2 £ 7.6 yrs.) recruited at the UCSD Movement Disorder Center. These participants
interacted with the software and received clinical evaluations over a three hour period
under close supervision. Participants at both sites signed informed consent before
entering into the study.

3.1 Comfort Ratings/Ease of Use

To determine ease of use we employed the well-established Visual Analog Scale
(VAS) [13, 14] to assess comfort of the whole system and of individual sensors
separately. The Android handheld device calculated a number from 0-100 corre-
sponding to the location of the cursor as placed on the line by the participant. The three
patients and one age-matched control at UCSD rated the WMMS at 90 + 7 % of the
perceived comfort visual analog scale (PC-VAS), and this rating did not after three
hours of wear (Fig. 2). Healthy young adults at ARL rated the system initially as less
comfortable (75 + 12 % of the PC-VAS; compared to patients), but these ratings also
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did not change over seven hours of wear. These preliminary results indicate that the
system’s high comfort level was maintained even while being worn over extended
durations. All pilot users were asked if the system was comfortable upon first place-
ment, and all users replied that the system was comfortable. Therefore, we believe that
healthy adults and patients have different thresholds for comfort that is in turn reflected
in different initial PC-VAS ratings. All participants also reported that the WMMS was
esthetically acceptable, unobtrusive, and easy to use.
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Fig. 2. Comfort Ratings (from the PC-VAS) at intervals during the pilot study

3.2 Quality of WMMS Data Compared to Medical Instruments

One of the goals of the pilot study held in the clinic was to compare the quality of data
collected from the WMMS to data collected from gold-standard medical instruments.

Heart Rate and Rhythm. There were no substantial differences between the EKG
readings (heart rate, thythm, and waves) from the Bioharness and the EKG machine
(Illustrated in Fig. 3 for two patients).

Patient 1 Patient 2

Gold Standard 'I ﬁ L !
EKG Machine ——/r——lin— —r—d

Wireless Chest
Strap EKG —J.J‘———LA— —

Fig. 3. Comparison of simultaneously recorded EKG traces from the standard wired EKG
machine and the wireless chest strap (i.e. the Bioharness) of the WMMS.

Blood Pressure. Figure 4 shows an example of the BPs obtained from the WMMS and
a standard cuff BP machine for two patients. While the BP fluctuated throughout the
day, the blood pressure taken by the machine at intermittent intervals (three times for
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Patient 1 and twice for Patient 2) was very close to the reading given by the wristwatch
device (i.e. the BPro). It is important to note that the starting value for both devices is
the same because the wristwatch requires an initial calibration value from the blood
pressure machine.

Patient 1 Patient 2
==Wristwatch
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Fig. 4. Comparison of recorded blood pressure readings from the BPro wristwatch (solid lines)
and the standard machine (black diamonds and circles) in the clinic for two patients.

3.3 Capturing Relevant Events

During the time while patients were in the clinic, any relevant events were noted on the
smartphone, so that those events were timelocked to the physiological data streams.

Tremor. During the pilot study in the clinic one patient displayed behavior that was
identified clinically as tremor at rest typically observed in parkinsonism. The accel-
erometer outputs (from three devices) that corresponded to this time period can be
found in Fig. 5 (right panel). Compared to normal movement without tremor (left
panel), the tremor is shown by the regular oscillation in the leg and hand in contrast to
normal movement patterns where acceleration increases and decreases without an
oscillation pattern.
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Fig. 5. Accelerometer data streams for one patient during normal movement with no tremor (left
panel) and a resting tremor (right panel).
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Near-fall. One patient experienced two near-falls due to balance impairment, and these
events were captured in the multimodal data stream. Figure 6 compares the acceler-
ometer streams for one of the near-falls (left panel) with the same ten second time
period where the patient sat down and stood back up again according to instructions in
the Baseline Measurements App (right panel). The near-fall created a large but brief
increase in peak acceleration values from the chest sensor (where the patient sat down
abruptly to catch the fall). This brief but sharp increase is not seen when the patient sits
down and stands up normally. These data demonstrate that the WMMS can distinguish
between different types of actions, including distinguishing falls and near-falls from
normal actions. Moreover, the lack of simultaneous or preceding EKG and blood
pressure abnormalities (not shown) excluded the cardiovascular and autonomic systems
as potential causes for the near-fall and pointed to postural instability as a cause of this
near-fall.

Near Fallto Normal Standing to
Sitting Sitting to Standing
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Fig. 6. Accelerometer data streams for one patient during a near-fall to sitting (left panel) and
during normal standing to sitting (right panel).

4 Fall Prediction Algorithm Development

Successful fall detection algorithms have been developed using acceleration data col-
lected from various parts of the body utilizing techniques such as less sensitive simple
threshold based algorithms [15] or more complex and precise machine learning algo-
rithms [16] including the use of Bayesian models [17]. While a wide literature has
established that basic fall detection is a relatively simple process requiring only
acceleration data from a few sites on the body, fall prediction algorithms have not yet
been attempted on real-world data. Moreover, to our knowledge diagnosing the mul-
tiple causes for a fall has not been attempted. The WMMS offers an integrated view as
it will utilize real-world continuous multimodal data streams collected on healthy
controls and fall-prone subjects to begin to build prediction profiles for the various
causes of falls. These profiles could be used for the prediction and intervention of falls
in this population and the ageing population at large. We will use the recently validated
definition of near-falls by Maidan et al. [18]: A stumble event or loss of balance that
would result in a fall if sufficient recovery mechanisms were not activated. At least two
of the following mechanisms should be activated to be determined as a near-fall:
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(1) unplanned movement of arms or/and legs; (2) unplanned change in stride length,
(3) lowering of the center of mass, (4) unplanned change in stride velocity and
(5) trunk tilt.

Once fall and near-fall events are identified via user input and/or basic fall detection
algorithms, we will then utilize the rich multimodal dataset (including those data
obtained through the pathways, questionnaires, and motor apps) to probe for which
preceding features are predictive of falls. We will do this by applying recent ground-
breaking machine learning techniques [19-23] to these multimodal data streams.
Techniques include but are not limited to fuzzy logic [24] and Bayesian probability
models [17]. The techniques will not only mine physiological and physical activities
from multimodal sensors, but also handle context awareness, and subject specific
models and personalization. Once an optimal fall prediction algorithm has been cre-
ated, it will then be deployed in real-time on the smartphone and will trigger questions
for the user or an emergency call to the study coordinators or 911 if questions are left
unanswered or the patient reports an injury.

5 Conclusion

This paper has described a novel multimodal system designed to study falls in
movement disorder patients. Overall the WMMS functioned well during the short pilot
study. Patients and younger healthy adults found the system to be comfortable and easy
to use throughout the study. The system provided continuous high-quality datastreams
from a variety of users (from young healthy adults to older movement disorder
patients). These datastreams were of high enough quality to be comparable to
gold-standard medical equipment and to discriminate between events of interest and
normal movement patterns. Moving forward, we aim to continue to collect data for the
pilot study and to incorporate any advances in technology in order to update the sys-
tem. For example, we chose the HealthStats BPro to measure blood pressure because it
is the best non-cuff semi-continuous blood pressure device available on the market.
However, during the pilot study we noted that the device lacked sufficient data col-
lection frequency to accurately measure sudden blood pressure drops. New emerging
technology utilizing Pulse Transit Time (PTT) [25, 26] may provide an alternative
option. The WMMS employs a very flexible architecture and can be modified to
incorporate new sensor technology as it becomes available. With continued improve-
ment and data collection, we can deploy fall detection algorithms and initialize fall
prediction algorithm development. We believe the WMMS holds the promise of safer
and more independent living, not only for movement disorder patients but also for the
ageing population at large.
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