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Abstract. The method of calculating Fitts’ throughput is detailed, considering
task characteristics, the speed-accuracy trade-off, data collection, and data
aggregation. The goal is to bring consistency to the method of calculation and
thereby strengthen between-study comparisons where throughput is used as a
dependent measure. In addition, the distinction between indirect and direct
pointing devices is elaborated using the examples of a mouse as an indirect
pointing device and a finger as a direct pointing device. An experiment with 16
participants using a smart phone was conducted as an empirical test of direct
touch-based target selection. Overall, the throughput was 6.95 bps. This is a
remarkable figure – about 50 % higher than accepted values for a mouse. The
experiment included task type (1D vs. 2D) and device position (supported vs.
mobile) as independent variables. Throughput for the 1D task was 15 % higher
than for the 2D task. No difference in throughput was observed between the
supported and mobile conditions.
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1 Background

The graphical user interface (GUI) first appeared in 1981 when Xerox Corp. introduced
the 8100 Information Workstation, better known as the Star [9, p. 11]. The Star was the
first commercial system to use a mouse and point-and-click interaction. About the same
time, Shneiderman coined the expression direct manipulation to reflect this promising
new genre of interaction [13]. Instead of typing commands in a terminal window, users
maneuver a mouse to directly manipulate on-screen graphical objects, such as icons,
menus, and buttons.

While Shneiderman’s broad insights were correct, a lower level of analysis reveals
that mouse operation is an example of indirect input: Input actions occur on the desktop
while output responses appear on the display. Because of the indirectness, a cursor is
required as an intermediary. With direct input, the input and output spaces are merged.
We will return to this point shortly.

In the 35 years since the GUI appeared, there has been considerable research on
evaluating the mouse and comparing it with alternative devices or techniques (see [8, 15]
for reviews). Most evaluations use target selection tasks modeled after Fitts’ law [4, 5].
For the mouse and other indirect input devices, this involves manipulating the device to
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move an on-screen cursor over a specified amplitude (A) to acquire a target of a specified
width (W). Selection involves a final button press.

Direct input is different: Targets appear on the display and the input device operates
directly on the targets. Indirect input and direct input are contrasted in Fig. 1.

The primary dependent variable for a Fitts’ law study is throughput in bits/s. In the
next section, the calculation of throughput is detailed. Due to space limitations, the
discussion is brief. Additional details are found in other sources (e.g. [4, 8, 15]).

Fitts’ Law and Throughput. Fitts’ motivation was to investigate whether human
performance in target acquisition tasks could be measured or quantified using an
information metaphor. He reasoned that a human operator that acquires targets over a
certain amplitude (signal) and with variable success (noise) is demonstrating a “rate of
information transfer” [4, p. 381]. Fitts’ index of performance, now throughput (TP), is

TP ¼ IDe = MT ð1Þ

where IDe is a task’s effective index of difficulty (in bits) computed from the movement
amplitude (A) and target width (W) and MT is the mean movement time (in seconds)
recorded over a sequence of trials. The IDe-term in Eq. 1 expands as follows:

IDe ¼ log2 Ae = We þ 1ð Þ ð2Þ

Use of the effective values (subscript “e”) is a change proposed by Crossman [2, 16,
p. 146] and subsequently endorsed by Fitts [5] to include spatial variability or accuracy
in the calculation. With this, We is computed as 4.133 × SDx, where SDx is the standard
deviation in the selection coordinates and Ae is the mean of the actual movement
amplitudes in the sequence of trials. Adjusted in this manner, throughput is a single
human performance measure that embeds both the speed and accuracy in human
responses. The trade-off is revealed in Fig. 2.

Throughput computed using Eq. 1 is a measure of human performance in the
context of the task, device, and environmental conditions when the data were collected.
If testing over, say, two or three separate test conditions, the differences in throughput
can be used to assess performance differences between the conditions.

Fig. 1. Indirect input (left) requires a cursor as an intermediary. With direct input (right), actions
occur directly on output targets
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Since throughput includes speed and accuracy, the comparison is a composite, and
bears no prejudice toward speed or accuracy as viewed alone [10]. This is clearly a
useful property of throughput. However, inconsistencies in the method of collecting
data and performing the calculation have exacerbated the use of throughput as a
dependent variable in experimental research. One goal in this paper is to remedy this.

Data Collection and Calculation of Throughput. In this section, the best-practice
method for calculating throughput is detailed.

Most Fitts’ law experiments combine either serial or discrete responses with
one-dimensional (1D) or two-dimensional (2D) movements. See Fig. 3. Example tasks
are described in the ISO 9241-9 standard for evaluating non-keyboard devices and
interaction techniques [7, 15].

Regardless of the task, the calculation of throughput requires Cartesian coordinate
data for each trial for the starting position (“from”), the target position (“to”), and the
select position. See Fig. 4.

The calculation begins by computing the length of the sides connecting the from,
to, and select points in the figure. Using Java syntax,

double a = Math.hypot(x1 - x2, y1 - y2);
double b = Math.hypot(x - x2, y - y2);
double c = Math.hypot(x1 - x, y1 - y); 
The x-y coordinates correspond to the from (x1, y1), to (x2, y2), and select (x,

y) points in the figure. Given a, b, and c, as above, dx and ae are then calculated:

Fig. 2. The speed-accuracy trade-off in the calculation of Fitts’ throughput

Fig. 3. Fitts’ law tasks: 1D versus 2D. Serial versus discrete
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double dx = (c * c – b * b – a * a) / (2.0 * a);
double ae = a + dx; 
Note that dx is 0 for a selection at the center of the target (as projected on the task

axis), positive for a selection on the far side of center, and negative for a selection on
the near side. It is an expected behaviour that some selections will miss the target.

The effective target amplitude (Ae) is ae in the code above. It is the actual
movement distance for the trial, as projected on the task axis. For serial responses, an
additional adjustment for Ae is to add dx from the previous trial (for all trials after the
first). This is necessary since each trial begins at the selection point of the previous trial.
For discrete responses, each task begins at the center of the from target.

Given arrays for the from, to, and select points in a sequence of trials, Ae is the
mean of the ae values and SDx is the standard deviation in the dx values. With these,
IDe is computed using Eq. 2 and throughput (TP) is computed using Eq. 1.

The use of the effective target amplitude (Ae) has little influence on TP, provided
selections are distributed about the center of the targets. However, it is important to use
Ae to prevent “gaming the system.” For example, if all movements fall short and only
traverse, say, ¾ of A, TP is artificially inflated if calculated using A. Using Ae prevents
this. This is part of the overall premise in using “effective” values: Participants get
credit for what they actually did, not for what they were asked to do.

Calculate Throughput on Each Sequence of Trials. The correct level of data
aggregation for calculating Fitts’ throughput is a sequence of trials. The premise for
this is twofold:

1. Throughput cannot be calculated on a single trial.
2. A sequence of trials is the smallest unit of action for which throughput can be

attributed as a measure of performance.

On the first point, the calculation of throughput includes the variability in selection
coordinates (akin to “noise”). Thus, multiple selections are required and from these
data the variability in the coordinates is computed.

The second point is of ecological concern. After a sequence of trials, the user
pauses, stretches, adjusts the apparatus, has a sip of tea, adjusts her position on a chair,
or something. There is a demarcation between sequences and for no particular purpose
other than to provide a break or pause between sequences, or perhaps to change to a
different test condition. It is reasonable to assert that once a sequence is over, it is over!

Fig. 4. Geometry for a trial
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Behaviours were exhibited, observed, and measured and the next sequence is treated as
a separate unit of action with separate performance measurements.

Related to the second point is the following: Throughput should not be calculated
on larger sets of raw data. For example, if six participants each perform five sequences
of trials under the same test condition, there are 6 × 5 = 30 calculations of throughput,
rather than a single calculation on the pooled raw data.

Calculation of Throughput in the HCI Literature. A detailed review of the cal-
culation of throughput in the HCI literature is beyond the scope of this paper. Incon-
sistency is common and this weakens between-study comparisons based on throughput.
A few examples follow.1

Dijkstra et al. reported throughput in research on flexible displays [3]. The move-
ment amplitude (A) differed from one trial to the next in a sequence. Furthermore, A was
“freely determined by the participant” [3, p. 1300]. Pedersen and Hornbæk reported
throughput in research on touch input with a tabletop surface [12, Table 1]. Error trials
were excluded in the calculation. Wobbrock and Gajos reported throughput in research
using participants with and without a motor impairment [17]. The calculation excluded
accuracy, and used W instead of We. Forlines et al. reported throughput in a docking
task on a tabletop display [6]. Throughput was calculated as 1/b – the slope reciprocal
from the regression equation:MT = a + b ID. Provided the intercept a is 0, or close to 0,
there is little difference between this value and that computed using Eq. 1. But, the
intercept was large: 460 ms [6, Table 1]. Also, error trials were excluded.

Interpreting throughput as 1/b from the regression equation is a point of particular
contention in the HCI literature. (For contrasting opinions, see [15, Sect. 3.5; 18])
Although 1/b has units “bits per second”, this term cannot be used as a dependent
variable in experimental research – because of the wavering influence of the intercept,
a, which is absent in 1/b. Besides, using 1/b as throughput is inconsistent with Fitts’
original definition: “The average rate of information generated in a series of movements
is the average information per movement divided by the time per movement” [4,
p. 390].

It makes little sense to recite and compare the values for throughput in the studies
just cited: They were computed in different ways. A goal herein is to remedy this by
providing a clear articulation of the method of calculating Fitts’ throughput.

2 Method

In this section, a user study is described that demonstrates the calculation of throughput
for touch-based target selection. The study examined the effects of task type (1D vs.
2D) and device position (supported vs. mobile). For the supported condition, partici-
pants sat at a desk with the device positioned on the desktop. For the mobile condition,
participants stood and held the device in one hand while selecting targets with the index
finger on the opposite hand.

1 To be clear, the examples are not necessarily wrong. They are given and distinguished only to reveal
inconsistencies in the literature.
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2.1 Participants

Participants were recruited from the local university campus. The only stipulation was
that participants were regular users of a touchscreen phone, pad, or tablet. Sixteen
participants were recruited from a wide range for disciplines. Six were female. The
mean age was 24.3 years (SD = 3.0). Participants’ average touchscreen experience was
22.9 months (SD = 15.8). All participants were right-handed.

As the experiment involved target selection using the finger on a small display, we
also investigated the relationship between finger width and performance. The width of
each participant’s index finger was measured at the distal joint using the caliper in
Fig. 5. The mean finger width was 14.0 mm (SD = 1.4).

2.2 Apparatus (Hardware and Software)

Testing was done on a LG Nexus 4 touchscreen smartphone running Android OS
version 4.2.2. The display was 61 × 102 mm (2.4 in. × 4.0 in.) with a resolution of
768 × 1184 px (pixels) and a px density of 320 dpi. All communication with the phone
was disabled during testing.

Custom software called FittsTouch was developed using Java SDK 1.6. The
software implemented the serial 1D and 2D tasks commonly used in Fitts’ law
experiments.

The same target amplitude and width conditions were used for both task types. The
range was limited due to the small display and finger input. In all, six combinations
were used: A = { 156, 312, 624 } px × W = { 78, 130 } px. These corresponded to task
difficulties from ID = 1.14 bits to ID = 3.17 bits (see Eq. 2). A wider range is desirable
but pilot testing at W = 30 was deemed untenable. The scale of target conditions was
chosen such that the widest condition (largest A, largest W) spanned the width of the
display (portrait orientation) minus 10 px on each side. Examples of target conditions
are shown in Fig. 6.

The 2D conditions included 20 targets, which was the number of trials in a
sequence. The target to select was highlighted. Upon selection, the highlight moved to
the opposite target. Selections proceeded in a rotating pattern around the layout circle
until all targets were selected. For the 1D task, selections were back and forth.

Fig. 5. Caliper used to measure the width of each participant’s index finger
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Data collection for a sequence began on the first tap and ended after 20 target
selections (21 taps). An auditory beep was sounded if a target was missed.

At the end of each sequence a dialog appeared showing summary results for the
sequence. Figure 7 gives an example. The dialog is useful for demos and to help inform
and motivate participants during testing.

2.3 Procedure

After signing a consent form, participants were briefed on the goals of the experi-
ment. The experiment task was demonstrated to participants, after which they did a
few practice sequences for each test condition. For the mobile condition, participants
were asked to stand and hold the device in their non-dominant hand and select targets
with the index finger on their dominant hand. For the supported condition, partici-
pants sat at a desk with the device positioned on the desktop. They were allowed to
anchor the device with their non-dominant hand if desired. An example of a par-
ticipant performing the 1D task with the device supported on the desktop is shown in
Fig. 8.

Participants were asked to select targets as quickly and accurately as possible, at a
comfortable pace. They were told that missing an occasional target was OK, but that if
many targets were missed, they should slow down.

(a) (b) (c) 

Fig. 6. Example target conditions: (a) 1D nominal (b) 2D easiest (c) 2D hardest

Fig. 7. End-of-sequence dialog
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2.4 Design

The experiment was fully within-subjects with the following independent variables and
levels:

Device position mobile, supported 
Task type  1D, 2D 
Block   1, 2, 3, 4, 5 
Amplitude  156, 312, 624 
Width  78, 130  
The primary independent variables were device position and task type. Block,

amplitude, and width were included to gather a sufficient quantity of data over a
reasonable range of task difficulties.

For each condition, participants performed a sequence of 20 trials. The 4 device
position × task type conditions were assigned using a balanced Latin square with 4
participants per order. The amplitude and width conditions were randomized within
blocks.

The dependent variables were throughput, movement time, and error rate. The
relationship between participants’ finger widths and performance was also examined.

Testing lasted about 45 min per participant. The total number of trials was 16
participants × 2 device positions × 2 task types × 5 blocks × 3 amplitudes × 2
widths × 20 trials = 38,400.

3 Results and Discussion

In this section, results are given for throughput, movement time, and error rate. As
space is limited and the calculation and use of throughput is the primary theme in this
paper, the results for movement time and error rate are abbreviated.

3.1 Throughput

The grand mean for throughput was 6.95 bps. This result, in itself, is remarkable. Here
we see empirical and quantitative evidence underpinning the tremendous success of

Fig. 8. A participant doing the experiment task in the 1D-supported condition
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contemporary touch-based interaction. Not only is the touch experience appealing,
touch performance is measurably superior compared to traditional interaction tech-
niques. For desktop interaction the mouse is well-known to perform best for most
point-select interaction tasks.2 In a review of Fitts’ law studies following the
ISO 9241-9 standard, throughput values for the mouse ranged from 3.7 bps to 4.9 bps
[15, Table 5]. The value observed in the present study for touch input reveals a
performance advantage for touch in the range of 42 %–88 % compared to the mouse.
The most likely reason lies in the distinguishing properties of direct input versus
indirect input, as discussed earlier. With a mouse (and other traditional pointing
devices), the user manipulates a device to indirectly control an on-screen tracking
symbol. Selection requires pressing a button on the device. With touch input there is
neither a tracking symbol nor a button: Input is direct!

Participant by block results for throughput are shown in Fig. 9. Each point in the
figure is the mean of 24 separate calculations for throughput.

There was only a 0.2 % performance difference between the 1st block and the 5th
block. Three reasons seem likely: participants had prior experience with touch input,
the task was simple, and practice trials were given before testing. The means for
individual participants ranged from 5.12 bps to 8.83 bps. For subsequent analyses the
block data are pooled.

Throughput across the two main independent variables is shown in Fig. 10. The
difference by device position was small – only 3 %, with values of 6.85 bps supported
and 7.06 bps mobile. The difference was not statistically significant (F1,3 = 2.80,
p > .05). At first glance, this result seems surprising since a device is clearly more
stable when positioned on a desktop than when held in the hand. However, several
participants commented that they felt the supported condition was odd or awkward:
they wanted to hold the device! Clearly, there is a culture around mobile device usage –
an expectation that the device is operated in an unsupported position, such as holding it
in one hand while touching with fingers on the opposite hand.

Fig. 9. Throughput by block for 16 participants

2 A possible exception is the stylus. Performance with a stylus is generally as good as, or sometimes
slightly better than, a mouse [11].
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The difference in throughput by task type revealed a different story. Throughput for
the 2D condition was 6.39 bps. At 7.52 bps, performance in the 1D condition was
15.0 % better. The difference was statistically significant (F1,12 = 29.6, p < .0001). With
back-and-forth movement only, the 1D condition is clearly easier. Movements in the
2D condition are more complicated, since the direction of movement changes by 360°/
20 = 18° with each trial. Furthermore, occlusion is unavoidable for some trials in a
sequence. This does not occur for the 1D task.

3.2 Movement Time and Error Rate

The grand mean for movement time was 341 ms per trial. By task type, the means were
306 ms (1D) and 377 ms (2D). The difference was statistically significant (F1,12 = 48.5,
p < .0001). By device position, the means were 343 ms (mobile) and 339 ms (sup-
ported) The difference was not statistically significant (F1,12 = 0.35, ns).

The grand mean for error rate was 7.4 % per sequence. By task type, the means
were 7.3 % (1D) and 7.6 % (2D). The difference was not statistically significant
(F1,12 = 0.03, ns). By device position, the means were 6.7 % (mobile) and 8.1 %
(supported). The difference was not statistically significant (F1,12 = 1.60, p > .05).

The error rates cited are high compared to similar studies in desktop environments
[15]. The reason is revealed by examining results by target width and participants’
finger widths. By target width, the mean error rates were 2.7 % for the large targets
(W = 130 px) and 12.2 % for the small targets (W = 78 px). Thus there were 4.6 × more
errors for the small targets. Clearly, selecting small targets with the finger is a problem
for touch input. The display width of the 78-px target was 6.2 mm (0.25 in.). As noted
earlier, the mean width of the tip of participants’ index finger was 14.0 mm, which is
more than 2 × the target width!

Not only are small targets harder to select, the effect is more pronounced for
users with wide fingers. This is evident in Fig. 11, which shows both the increase
in error rate for the small targets as well as a pronounced positive trend by finger
width for the smaller target. It is no surprise then, that a research theme in
touch-based mobile computing is improving the techniques for selecting small
targets (e.g. [1, 14]).

Fig. 10. Throughput (bps) by device position and task type. Error bars show ±1 SD
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It is worth noting that the trend in Fig. 11 for error rate does not appear in a similar
chart for throughput (not shown). The scatter for throughput by finger width is
essentially flat, demonstrating that participants’ can achieve good performance (as
indicated in measures for throughput) irrespective of finger width.

3.3 Distribution Measures and Normality Test

A software tool was also used to assess the distribution characteristics of the selection
coordinates. The mean skewness of the distributions, over all 1920 sequences, was
−0.038 (SD = 0.523). The mean kurtosis was −0.120 (SD = 1.198). Both of these
figures are low, indicating no overall tendency toward a negative or positive skewness
or toward a flat or peaked distribution. A normality test was conducted using the
Lilliefors procedure at alpha = .05. In all, 93.2 % of the sequences were deemed to
have selection coordinates conforming to the normal distribution, which is to say, the
null hypothesis of normality was not rejected.

4 Conclusion

In this paper, the best-practice calculation for Fitts’ throughput was demonstrated in a
user study on touch-based target selection. During the experiment, throughput and
other measures were calculated. The grand mean for throughput was 6.95 bps, which is
42 %–88 % higher than values typically reported for the mouse. The 1D condition
yielded a throughput of 7.52 bps which was 15 % higher than the 6.39 bps observed for
the 2D task.
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