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Graph transformation systems are a powerful formal model to capture model
transformations or systems with infinite state space, among others. However, this
expressive power comes at the cost of rather limited automated analysis capabilities.
The general case of unbounded many initial graphs or infinite state spaces is
only supported by approaches with rather limited scalability or expressiveness.
In this paper we improve an existing approach for the automated verification
of inductive invariants for graph transformation systems. By employing partial
negative application conditions to represent and check many alternative conditions
in a more compact manner, we can check examples with rules and constraints
of substantially higher complexity. We also substantially extend the expressive
power by supporting more complex negative application conditions and provide
higher accuracy by employing advanced implication checks. The improvements are
evaluated and compared with another applicable tool by considering three case
studies.
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1. Introduction

Graph transformation systems are a powerful formal model to capture model
transformations, systems with reconfiguration, or systems with infinite state space,
among others. However, the expressive power of graph transformation systems
comes at the cost of rather limited automated analysis capabilities.

While for graph transformation systems with finite state space of moderate size
certain model checkers can be used (e.g., [9, 16]), in the general case of unbounded
many initial graphs or an infinite state space only support by techniques with
rather limited scalability or expressiveness exists.

There is a number of automated approaches that can handle infinite state spaces
by means of abstraction [5, 17, 14, 13], but they are considerably limited in expres-
sive power as they only support limited forms of negative application conditions at
most. Tools only targeting invariants [4, 2] also only support limited forms of nega-
tive application conditions at most; in some cases additional limitations concerning
the graphs of the state space apply (cf. [4]). On the other hand the SeekSat/ProCon
tool [15, 11] is able to prove correctness of graph programs with respect to pre- and
postconditions specified as nested graph constraints without such limitations, but
requires potentially expensive computations.

In this paper we present improvements of our existing approach introduced in
[2] for the automated verification of inductive invariants for graph transformation
systems. Inductive invariants are properties whose validity before the application
of a graph rule implies their validity thereafter. Our general approach involves
the construction of a violation of the invariant after application of a graph rule,
represented in a symbolic way (target pattern), followed by calculation of the
symbolic state before rule application (source pattern). If a violation can then be
found in all such source patterns, the rule does not violate the inductive invariant;
otherwise, it does and the construction yields a witness. Since inductive invariants
are checked with respect to the capability of individual rules to violate or preserve
them, this technique avoids the computationally expensive computation of state
spaces and can even handle infinite systems.

By employing partial negative application conditions to represent and check
many alternative conditions in a more compact manner, our approach is now able
to check examples with rules and constraints of substantially higher complexity.
Our improvements also provide higher accuracy by employing advanced implica-
tion checks and extend expressive power by supporting more complex negative
application conditions. While not as expressive as the general concept of nested
graph conditions [11], there is a significant number of examples [2, 10, 3] for which
the supported level of expressive power is sufficient. Of those, we employ three case
studies concerned with car platooning and model transformations to evaluate our
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improvements and to compare them with the SeekSat/ProCon tool, demonstrating
that our approach shows better scalability for certain cases.

The report is organized as follows: The formal foundations are introduced in
Section 2. Our restrictions and important constructions in our algorithms are ex-
plained in Section 3. Section 4 presents the employed inductive invariant checking
scheme with its formal justification. Section 5 presents our evaluation, with Section
6 then discussing related work. Finally, Section 7 provides a summary and outlook
on possible future work. Additional prerequisites concerning the formal model
can be found in Appendix A and B; omitted proofs can be found in the respective
sources.
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2. Foundations

This section shortly describes foundations of graph transformation systems we use
in our verification approach. For additional definitions, we refer to Appendix A.

The formalism used herein (cf. [7]) considers a graph G = (V, E, s, t) to consist of
sets of nodes, edges and source and target functions s, t ∶ E → V. A graph morphism
f ∶ G1 → G2 consists of two functions mapping nodes and edges, respectively, that
preserve source and target functions. In this paper we put special emphasis on
injective morphisms (or monomorphisms), denoted f ∶ G1 ↪ G2, and consider typed
graphs, i.e. graphs typed over a type graph TG by a typing morphism type ∶ G → TG
and typed graph morphisms that preserve the typing morphism. We also adopt the
concept of partial monomorphisms:

Definition 1 (partial monomorphism ([15], adjusted)). A partial monomorphism
p ∶ A ⨽⇀ B is a 2-tuple p = ⟨a, b⟩ of monomorphisms a, b with dom(a) = dom(b), dom(p) =
codom(a), and codom(p) = codom(b). The interface of p refers to the common domain of
a and b, i.e., iface(p) = dom(a) = dom(b). A partial monomorphism p = ⟨a, b⟩ is said to be
a total monomorphism b, if a is an isomorphism, i.e. a bijective morphism.

A ′ � a
//

�

b
��

A
n

p=⟨a,b⟩~
B

Thus, the partial monomorphism p ∶ A ⨽⇀ B describes an inclu-
sion of a subgraph A ′ of A in B. With partial monomorphisms
we can define partial application conditions, which, similar to
nested application conditions [11], describe conditions on mor-
phisms. Graph constraints, on the other hand, describe conditions on graphs.

Definition 2 (partial application condition ([8], extended to partial morphisms)). A
partial application condition is inductively defined as follows:

1. For every graph P, true is a partial application condition over P.
2. For every partial monomorphism a ∶ P ⨽⇀ C with a = ⟨p, c⟩ and monomorphisms

p ∶ P ′ ↪ P and c ∶ P ′ ↪ C and every partial application condition ac over C, ∃(a, ac)
is an application condition over P.

3. For partial application conditions ac, aci over P with i ∈ I (for all index sets I), ¬ac
and ⋀i∈I aci are partial application conditions over P.

P ′ � p
//

�

c
��

P
o

a=⟨p,c⟩�
Cac▷

P ′ � p
//

�

c
��

P
o

a=⟨p,c⟩�

g

��
C � q ⊧ ac

//ac▷ G
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Satisfiability of partial application conditions is inductively defined as follows:

1. Every morphism satisfies true.
2. A morphism g ∶ P → G satisfies ∃(a, ac) over P with a ∶ P ⨽⇀ C with a = ⟨p, c⟩ if

there exists an injective q ∶ C ↪ G such that q ○ c = g ○ p and q satisfies ac.
3. A morphism g ∶ P → G satisfies ¬ac over P if g does not satisfy ac and g satisfies
⋀i∈I aci over P if g satisfies each aci (i ∈ I).

We write g ⊧ ac to denote that the morphism g satisfies ac.
Two application conditions ac and ac ′ are equivalent, denoted by ac ≡ ac ′, if for all

morphisms g ∶ P → G, g ⊧ ac if and only if g ⊧ ac ′.
If all morphisms involved in a partial application condition are total morphisms we say

that it is a total application condition.
∃p abbreviates ∃(p, true). ∀(p, ac) abbreviates ¬∃(p,¬ac).

Definition 3 (graph constraint [11]). A graph constraint is an application condition
over the empty graph ∅. A graph G then satisfies such a condition if the initial morphism
iG ∶ ∅ ↪ G satisfies the condition.

:P  :I  :C  :P  :I  

:P  :I  

:C 

:O 

↪
 

↩ 

𝑎𝑐 =  ¬∃𝑝 

𝑝 = 〈𝑎, 𝑏〉 

𝑎 
𝑏 

(a) Partial condition

:P  :I  :C  

:P  :I  

:C 

:O 

𝑐 

↪
 

:C 

:P  :I  :C 

:O 

:P  :I  :C 

:O 

↪ 

𝑎𝑐′ =  ¬∃𝑐 ∧ ¬∃𝑑 ∧ ¬∃𝑒 

𝑑 

𝑒 

(b) Total condition

:I :I  

:C  

:O  

𝑖𝑃 
∅ ↪ ↪ 

= ¬∃ 𝑖𝑃 , ¬∃𝑥  

𝑥 

𝑎𝑐𝑃 = ¬∃𝑥 

𝐹 = ¬∃ 𝑖𝑃 , 𝑎𝑐𝑃  

(c) Graph constraint

Figure 1: Partial and total conditions and graph constraint

Example 4. Figure 1 shows an example from a software refactoring context (cf. [3]) with
node types P, I, C, O standing for Package, Interface, Class, and Operation, respectively.
Although equivalent, the partial condition ac in Figure 1(a) is much more compact – and
also less expensive in computation – when compared to the total condition ac ′ in Figure 1(b).
Both conditions describe the absence of an implementing class and contained operation for
the interface. Further, Figure 1(c) shows a graph constraint F, which forbids the existence
of an interface without an implementing class containing an operation.

Application conditions can also be used in graph rules, which are used to trans-
form graphs. Finally, a graph transformation system consists of a number of rules
and, in our case of typed graph transformation systems, of a type graph.
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2. Foundations

Definition 5 (rules and transformations [8]). A plain rule p = (L ↩ K ↪ R) consists
of two injective morphisms K ↪ L and K ↪ R. L and R are called left- and right-hand
side of p, respectively. A rule b = ⟨p, acL, acR⟩ consists of a plain rule p and a left (right)
application condition acL (acR) over L (R).

L

(1) (2)

acL▷

m ⊧ acL
��

K � r //?loo

��

R◁acR

m ′ ⊧ acR
��

G D �
r ′
//?

l ′
oo H

A direct transformation consists of two pushouts (1) and (2) such that m ⊧ acL and
m ′ ⊧ acR. We write G ⇒b,m,m ′ H and say that m ∶ L → G is the match of b in G and
m ′ ∶ R → H is the comatch of b in H. We also write G ⇒b,m H, G ⇒m H or G ⇒ H to
express that there exist m ′, m or b such that G⇒b,m,m ′ H.

We also introduce the concept of a reduced rule, which basically is a rule without
certain elements irrelevant for a specific application via a match once the applica-
bility for that match is ensured. By using reduced rules, we can reduce the effort
necessary for verification, as will be shown later.

Definition 6 (reduced rule). Given a plain rule b = ⟨L ↩ K ↪ R⟩, we define a reduced
rule of b as a rule b∗ = ⟨L∗ ↩ K∗ ↪ R∗⟩ with injective morphisms r+ ∶ R∗ ↪ R, l+ ∶ L∗ ↪ L
and k+ ∶ K∗ ↪ K such that for all graphs G, H and injective morphisms m, m ′ it holds that
G⇒b,m,m ′ H⇔ G⇒b∗,m○l+,m ′○r+ H.

Lr

m

��

K � r //?loo �





R �

m ′

��

L∗
?

l+
OO

K∗
?

k+
OO

� r∗ //?
l∗
oo R∗

?
r+
OO

G D?oo � // H

:P  :I  ↪ ↩ :C :I  :C  :P :I  :C  

:I  :P  :I  ↪ 

↪
 

↪
 

:P  :I  

↪
 

↩ 

𝑅 𝐾 𝐿 

𝑅∗ 𝐾∗ 𝐿∗ 

𝑟 𝑙 

𝑟∗ 𝑙∗ 

𝑘+ 𝑟+ 𝑙+ 

Example 7. The figure above shows a plain rule describing the replacement of a package
containing an existing interface and class. In general, a corresponding reduced rule (also
depicted) can be constructed by choosing K∗ as any subgraph of K whose images under l
and r include all nodes attached to edges to be deleted or created and then constructing L∗

and R∗ as the pushout complements of ⟨k+, l⟩ and ⟨k+, r⟩, respectively.
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3. Restrictions, Constructions, and Implication

With the foundations established, we will now introduce certain restrictions that
apply to our specifications and the main constructions used by our algorithms.

The most important adjustments are concerned with the notion of rules and
application conditions. Since most application conditions that will be encountered
in this paper have the same structure, we define a special kind of negative appli-
cation conditions without additional nesting. In comparison to our previous work
[2], this is a significant difference in expressive power, as [2] allowed only negative
application conditions with each having a node and an edge, at most.

Definition 8 (composed negative application condition). A composed negative
application condition is an application condition of the form ac = ⋀i∈I ¬∃ai for partial
monomorphisms ai of a common domain. An individual condition ¬∃ai is called negative
application condition. A (composed) total negative application condition is a (composed)
negative application condition including only total graph morphisms.

Our properties for verification are described by so-called forbidden patterns:

Definition 9 (pattern). A pattern is a graph constraint of the form F = ∃(∅ ↪ P, acP),
with P being a graph and acP a composed total negative application condition over P. A
composed forbidden pattern is a graph constraint of the form F = ⋀i∈I ¬Fi for some
index set I and patterns Fi. Patterns Fi occurring in a composed forbidden pattern are also
called forbidden patterns.

We also allow graph transformation systems to be equipped with a special
variant of composed forbidden pattern called composed guaranteed pattern. Such a
pattern is a constraint whose validity is guaranteed by some external means or
additional knowledge about the system under verification.

While our specification language concerning patterns and application conditions
is more limited than the general concept of nested application conditions [11], the
level of expressive power we support is sufficient to verify a number of case studies
[2, 10, 3]. On the other hand, the following additional limitations in our approach
(except for the second) do not result in a loss of expressive power [11, 7, 8]:

Morphisms in application conditions (Definition 2) must be injective.
Left application conditions (Definition 5) in rules are required to be composed

total negative application conditions.
Right application conditions (Definition 5) in rules are required to be true.
Rule applicability (Definition 5) requires injective matches and comatches.
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3. Restrictions, Constructions, and Implication

To conclude the definitions used in our verification approach, we introduce our
notion of inductive invariants for graph transformation systems. Informally, all
rule applications should preserve the validity of a composed forbidden pattern
F . Since the system is assumed to prevent violations of a composed guaranteed
pattern G by other means (e.g., a postprocessing step) or additional knowledge,
rule applications leading to such a violation do not need to be considered.

Definition 10 (inductive invariant). Given a composed forbbidden pattern F and a
composed guaranteed pattern G, a typed graph transformation system GTS = (TG, B) is
preserving F under G if, for each rule b in B, it holds that

∀G, H((G⇒b H) Ô⇒ ((G ⊧ F ∧G ⊧ G) ⇒ (H ⊧ F ∨ H /⊧ G))).

A composed forbidden pattern F preserved by GTS under G is an inductive invariant for
GTS under G.

3.1. Constructions

An important part of our algorithm is the transformation of application conditions
over morphisms and rules. [8] presents a Shift-construction for a transformation
of application conditions over morphisms into equivalent application conditions.
For our restricted formal model, we use a marginally adjusted form of the Shift-
construction. Its validity is proven in Lemma 36 in Appendix B.

Construction 11 (Shift-construction, adjusted from [8]). For each total application
condition ac over a graph P and for each morphism b ∶ P → P ′, Shift(b, ac) transforms ac
via b into a total application condition over P’ such that, for each morphism n ∶ P ′ ↪ H, it
holds that n ○ b ⊧ ac⇔ n ⊧ Shift(b, ac).

The Shift-construction is inductively defined as follows:

P

(1)

△ac

b //

a
��

P ′�

a ′
��

C �
b ′
// C ′

Shift(b, true) = true.
Shift(b,∃(a, ac)) = ⋁(a ′,b ′)∈F ∃(a ′, Shift(b ′, ac)) if
F = {(a ′, b ′) ∣ (a ′, b ′) are jointly surjective, a ′, b ′ are injective,
and (1) commutes (b ′ ○ a = a ′ ○ b)} ≠ ∅ and false, otherwise.
Shift(b,¬ac) = ¬Shift(b, ac).
Shift(b,⋀i∈I aci) = ⋀i∈I Shift(b, aci).

While this construction can be employed to equivalently transform total applica-
tion conditions, the calculation of the respective morphism pairs is computationally
expensive. To avoid executing that calculation, we construct partial application con-
ditions instead and establish their equivalence to the result of the Shift-construction
in the following construction and lemma. As before, proof of validity and a more
detailed version can be found in Lemma 40 in Appendix B.
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Construction 12 (PShift-construction). For each total application condition ac over P ′

and for each morphism p ′ ∶ P ′ ↪ P, PShift(p ′, ac) transforms ac via p ′ into a partial
application condition over P such that, for each morphism n ∶ P ↪ H, it holds that
n ○ p ′ ⊧ ac⇔ n ⊧ PShift(p ′, ac).

The PShift-construction is defined as follows:

P ′

△ac

�

a
��

� p ′ // P
o

c=⟨p ′,a ′⟩�
C

PShift(p ′, true) = true.
PShift(p ′,∃(a, ac)) = ∃(c, ac) with c = ⟨p ′, a⟩.
PShift(p ′,¬ac) = ¬PShift(p ′, ac).
PShift(p ′,⋀i∈I aci) = ⋀i∈I PShift(p ′, aci).

Lemma 13 (equivalence of Shift and PShift). For each application condition ac over P
and each monomorphism p ′ ∶ P ↪ P ′, we have Shift(p ′, ac) ≡ PShift(p ′, ac).

Pac▷ � p ′ //�

n○b !!
=

P ′◁Shift(p ′,ac)
m

n||
H

Pac▷ �

n○p ′ !!

� p ′ //

=

P ′◁PShift(p ′,ac)
m

n||
H

Proof. This follows directly from Lemma 36, Lemma 40 and the respective construc-
tions.

We also transform application conditions over rules using the L-construction
found in [8]. Lemma 37 in Appendix B describes the formal basis for this construc-
tion.

Construction 14 (L-construction [8, 11]). For each rule b = ⟨L ↩ K ↪ R⟩ and each
total application condition ac over R, L(b, ac) transforms ac via b into a total application
condition over L such that, for each direct transformation G ⇒b,m,m ′ H, we have m ⊧
L(b, ac) ⇔ m ′ ⊧ ac.

The L-construction is inductively defined:

L

(2)a ′
��

K

(1)

� r //?loo

��

R

a
��

L ′L(b ′,ac)▷ K ′ �
r ′
//?

l ′
oo R ′◁ac

L(b, true) = true.
L(b,∃(a, ac)) = ∃(a ′, L(b ′, ac)) (with b ′ =
⟨L ′ ↩ K ′ ↪ R ′⟩ constructed via the pushouts (1)
and (2)) if ⟨r, a⟩ has a pushout complement (1) and
false, otherwise.
L(b,¬ac) = ¬L(b, ac).
L(b,⋀i∈I aci) = ⋀i∈I L(b, aci).
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3.2. Implication

One of the main requirements for our algorithm is the comparison of graph con-
straints or, more precisely, the notion of implication of patterns.

Definition 15 (implication of patterns). Let C = ∃(∅ ↪ P, ac) and C ′ = ∃(∅ ↪ P ′, ac ′)
with composed partial negative application conditions ac and ac’ be two patterns. C ′

implies C (C ′ ⊧ C), if the following condition holds:

∀G(G ⊧ C ′ ⇒ G ⊧ C).

Since a pattern may be fulfilled by an infinite number of graphs, we cannot
(in general) check the above condition for all such graphs. Instead, we establish
a condition sufficient to imply implication when comparing patterns. Depending
on whether the patterns’ application conditions ac and ac ′ are partial, total, or
nonexistent (i.e. true), the procedure and its computational effort varies. The fol-
lowing theorem describes the most interesting case with a composed partial (total)
negative application in the implying (implied) pattern, respectively.

Theorem 16 (implication of patterns). Let C = ∃(∅ ↪ P, ac) and C ′ = ∃(∅ ↪ P ′, ac ′)
be patterns with a composed total negative application condition ac = ⋀i∈I ¬∃(P ↪xi Xi)
and a composed partial negative application condition ac ′ = ⋀j∈J ¬∃(P ′ ⨽⇀

x ′j X ′j ). Then
C ′ ⊧ C, if the following conditions are fulfilled:

P �
m

//�

xi
��

P ′_m−1
oo

�

⟨n ′j ,nj⟩=x ′j
�

Nj
V

m ′

vv
_

n ′j
oo
p

nj��
Xi X ′j?y
oo

1. There exists a monomorphism m ∶ P ↪ P ′ such that:
2. For each i ∈ I, there exists a j ∈ J such that

n ′j(iface(x ′j)) ⊆ m(P) and there exists a monomor-
phism y ∶ X ′j ↪ Xi such that y ○ nj = xi ○m ′, with
m ′ = m−1 ○ n ′j .

Proof. Assuming that the above conditions hold, we have to show ∀G(G ⊧ C ′ ⇒
G ⊧ C).

Consider an arbitrary graph G with G ⊧ C ′. By definition of satisfaction, we have
iG ⊧ C ′, implying the existence of a monomorphism g ′ ∶ P ′ ↪ G with g ′ ⊧ ac ′. By
assumption, there is a monomorphism m ∶ P ↪ P ′. Then there exists a morphism
g ∶ P → G with g = g ′ ○m. Since the set of monomorphisms M is closed under
composition, g is a monomorphism.
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Inductive Invariant Checking with Partial Negative Application Conditions

P �

g
��
=

�

m
//

�

x

��

P ′
o

g ′

��

�

x ′j

�

Nj
W

m ′=m−1○n ′j

tt
_

n ′j
oo

t

nj

��

= G =

X
0

q
@@

X ′j?y
oo

O
q ′

__

We will show g ⊧ ac by contradiction. Suppose g /⊧ ac, implying the existence of
a x = xi for some i ∈ I and a corresponding monomorphism q ∶ X ↪ G with g = q ○ x,
i.e. g /⊧ ¬∃x. By assumption, there is a monomorphism y ∶ X ′ ↪ X with X ′ = X ′j
for some j ∈ J and with y ○ nj = x ○m ′ and m ′ = m−1 ○ n ′j . Consequently, there is a
monomorphism q ′ ∶ X ′ ↪ G with q ′ = q ○ y. In addition, we have:

y ○ nj = x ○m ′

Ô⇒ q ○ y ○ nj = q ○ x ○m ′

Ô⇒ q ′ ○ nj = g ○m ′ (q ′ = q ○ y and q ○ x = g)
Ô⇒ q ′ ○ nj = g ′ ○m ○m ′ (g = g ′ ○m)
Ô⇒ q ′ ○ nj = g ′ ○m ○m−1 ○ n ′j (m ′ = m−1 ○ n ′j)

Ô⇒ q ′ ○ nj = g ′ ○ n ′j (n ′j(iface(x ′j)) ⊆ m(P))

This implies g ′ /⊧ ¬∃x ′ and therefore g ′ /⊧ ac ′. This is a contradiction, thus we
have g ⊧ ac. With g ∶ P ↪ G and g ⊧ ac, we get G ⊧ C, concluding the proof.

For patterns without negative application conditions, the theorem is also applica-
ble as the second condition is trivially true. For cases where the implying pattern’s
partial negative application conditions do not satisfy the interface condition, a
partial expansion of the implied pattern’s condition is required, which requires
additional computational effort.

In general, all cases can be transformed into a default case by expanding all
composed partial negative application conditions into composed total negative
application conditions with the Shift-construction. The comparison in that case is
explained in Theorem 41 in Appendix B. The desired effect of the above theorem is
to avoid this computationally expensive default case as often as possible.

This theorem only considers one implying pattern at a time. We also use an
advanced implication check considering more complex relations between forbidden
patterns and negative application conditions, such as implication of a single pattern
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3. Restrictions, Constructions, and Implication

by multiple patterns. The theory and implementation of such a check for the more
general concept of nested conditions have already been introduced by Pennemann
et. al. in [15]. Hence, we will not discuss our implementation here.

Besides graph constraints we will also encounter application conditions over a
rule side, which can be interpreted as graph constraints as follows:

Lemma 17 (reduction to pattern). Let ac = ∃(s ∶ L ↪ S, acS) be an application condition
over L with acS being a composed partial negative application condition. For the reduction
to a pattern ac∅ = ∃(iS ∶ ∅ ↪ S, acS) of ac we have the following property: for each graph
G with a monomorphism m ∶ L ↪ G such that m ⊧ ac, we have G ⊧ ac∅.

L �
s

��

�

m ⊧ ac

!!

∅
o

iS

��

~

iG = g ○ iS

}}

SacS▷ �

g
��

G

å

Proof. Consider an arbitrary graph G with a monomorphism m ∶ L ↪ G such that
m ⊧ ac. By definition of satisfiability, there exists a monomorphism g ∶ S ↪ G such
that g ⊧ acS. For iG ∶ ∅ ↪ G, we have iG = g ○ iS and with g ⊧ acS, we have iG ⊧ ac∅.
By definition of satisfiability, this implies G ⊧ ac∅, concluding the proof.
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4. Inductive Invariant Checking

Our inductive invariant checking algorithm consists of four basic steps:
1) From a composed forbidden pattern and a rule set, we create all pairs of

individual forbidden patterns and rules to be analyzed on a per-pair basis. 2) We
construct target patterns for each pair by applying the Shift- and PShift-constructions,
such that each target pattern represents a satisfaction of a forbidden pattern after
rule application. 3) From each target pattern, we construct a source pattern by
applying the L-construction such that a source pattern is a representation for graphs
before a rule application leads to a forbidden pattern. 4) We analyse source and
target pattern pairs (counterexamples) for other forbidden or guaranteed patterns,
which might invalidate the counterexample.

The first step of splitting a composed forbidden patterns into forbidden patterns
for individual analysis is shown to be correct in the following lemma. It also
explains the analysis of source and target patterns in step 4.

Lemma 18. Given a composed forbidden pattern F = ⋀i∈I ¬Fi, a composed guaranteed
pattern G = ⋀j∈J ¬Gj and a typed graph transformation system GTS = (TG, B), GTS is
preserving F under G if, for each rule b in B it holds that:

∀G, H((G⇒b H) Ô⇒ (∃n(H ⊧ Fn) ⇒ ∃k(H ⊧ Gk ∨G ⊧ Gk ∨G ⊧ Fk)))

Proof. We can rearrange the formula from Definition 10 (with j, k ∈ I and for each
rule b ∈ B).

∀G, H((G b⇒ H) Ô⇒ ((G ⊧ F ∧G ⊧ G) ⇒ (H ⊧ F ∨ H /⊧ G)))

⇐⇒ ∀G, H((G b⇒ H) Ô⇒ ((H /⊧ F ∧ H ⊧ G) ⇒ (G /⊧ F ∨G /⊧ G)))

⇐⇒ ∀G, H((G b⇒ H) Ô⇒ ((H /⊧ F) ⇒ (H /⊧ G ∨G /⊧ F ∨G /⊧ G)))

⇐⇒ ∀G, H((G b⇒ H) Ô⇒ ((H ⊧ ⋁
i∈I

Fi) ⇒ (H ⊧ ⋁
j∈J

Gj ∨G ⊧ ⋁
j∈J

Gj ∨G /⊧ ⋁
i∈I

Fi)))

⇐⇒ ∀G, H((G b⇒ H) Ô⇒ (∃n(H ⊧ Fn) ⇒ ∃k(H ⊧ Gk ∨G ⊧ Gk ∨G ⊧ Fk)))

4.1. Step 2: Construction of Target Patterns

The second step in our inductive invariant checking algorithm is the creation of
target patterns for each pair of a graph rule and a forbidden pattern such that the
forbidden patterns occurs in the target pattern. Target patterns in general represent
a set of graphs with a match for the right side of a specific graph rule.
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4. Inductive Invariant Checking

Definition 19 (target pattern). A target pattern over the right side R of a rule b is an
application condition of the form tar = false or tar = ∃(t ∶ R ↪ T, acT) with a composed
partial negative application condition acT over T.

The set of graphs fulfilling such a target pattern is the set of graphs H with a
comatch m ′ ∶ R ↪ H such that m ′ ⊧ tar. For a rule b in B and a forbidden pattern F,
we can create target patterns by transforming F over the morphism iR ∶ ∅ ↪ R into
an application condition over the right rule side R:

Lemma 20 (creation of target patterns). Let b = ⟨(L ↩ K ↪ R), acL, true⟩ be a rule and
F = ∃(iP ∶ ∅ ↪ P, acP) a forbidden pattern with acP and acL being composed total negative
application conditions. Let b∗ = ⟨(L∗ ↩ K∗ ↪ R∗)⟩ be a reduced rule of b with respective
injective morphisms r+ ∶ R∗ ↪ R, l+ ∶ L∗ ↪ L, and k+ ∶ K∗ ↪ K. Then we have:

1. Shift(r+, Shift(iR∗ ,∃iP)) = ⋁j∈J ∃tj.
2. ⋁j∈J tarj is a set of target patterns for tarj = ∃(tj, PShift(t+j , Shift(t ′∗k , acp))).
3. For each graph H and each monomorphism h ∶ R ↪ H, it holds that ∃j(j ∈ J ∧ h ⊧

tarj) ⇔ H ⊧ F.

∅

=

△acP
△acT∗j

,

iH=h○iR

%%�

iR∗
//

�

iP
��

)

iR

((R∗�

t∗k
��

�

r+
// R�

tj

��

�

h
// H

P �
t ′∗k
// T∗k
�

t+j // Tj

Proof. First, we will show that the construction yields the required structure.
According to the Shift-construction, we have Shift(iR∗ ,∃iP) = ⋁k∈K ∃t∗k , where

the index set K depends on the number of injective and jointly surjective mor-
phism pairs (t∗k , t ′∗k ). Further, again because of the Shift-construction, we have
Shift(r+,⋁k∈K ∃t∗k ) = ⋁j∈J ∃tj, where the index set J now depends on the number of
injective and jointly surjective morphism pairs (tj, t+j ).

Since acP is a composed total negative application condition over P and by
Lemma 38, acT∗j

= Shift(t ′∗k , acp) is a composed total negative application condition
over a specific T∗k . By the PShift-construction, PShift(t+j , acT∗j

) is a composed partial
negative application condition over Tj. Hence, tarj = ∃(tj, PShift(t+j , Shift(t ′∗k , acp)))
is a target pattern over R and thus ⋁j∈J tarj is a set of target patterns over R.
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Second, by the Shift- and PShift-construction and by definition of satisfiability
we have for each graph H and each monomorphism h ∶ R ↪ H:

H ⊧ F

⇐⇒ iH ⊧ F (Definition 3)
⇐⇒ h ○ r+ ○ iR∗ ⊧ F

⇐⇒ h ○ r+ ⊧ Shift(iR∗ , F) (Shift-construction)
⇐⇒ h ⊧ Shift(r+, Shift(iR∗ , F)) (Shift-construction)
⇐⇒ h ⊧ Shift(r+,⋁

k∈K
∃(t∗k , Shift(t ′∗k , acP))) (Shift-construction)

⇐⇒ h ⊧ ⋁
j∈J
∃(tj, Shift(t+j , Shift(t ′∗k , acP))) (Shift-construction)

⇐⇒ h ⊧ ⋁
j∈J
∃(tj, PShift(t+j , Shift(t ′∗k , acP))) (Lemma 13)

⇐⇒ h ⊧ ⋁
j∈J

tarj

⇐⇒ ∃j(j ∈ J ∧ h ⊧ tarj)

In other words, we shift the exterior application condition (∃iP in step 1) of
the forbidden pattern to the right rule side, but its interior composed negative
application condition (acP in step 2) to a partial application condition using the
reduced rule. Thus, we avoid creating a large number of morphism pairs when
shifting the interior application condition to the complete right rule side.

In conclusion, for each morphism h ∶ R ↪ H the satisfaction of the forbidden
pattern F by a graph H is equivalent to the existence of a target pattern tarj satisfied
by h. In other words, for each result of a possible rule application leading to a graph
satisfying the forbidden pattern we have constructed a target pattern. Since target
patterns (as shown above) are disjunctively combined, we can analyze each target
pattern individually and compute its source pattern. By construction, we always
have a finite number of target patterns.

4.2. Step 3: Construction of Source Patterns

For each target pattern constructed as described above, we try to generate a source
pattern to represent the state before the application of the rule lead to the forbidden
pattern. In general, we define source patterns analogously to target patterns as
application conditions over the left side of a specific graph rule.
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4. Inductive Invariant Checking

Definition 21 (source pattern). A source pattern over the left side L of a rule b is an
application condition of the form src = false or src = ∃(s ∶ L ↪ S, acS) with a composed
partial negative application condition acS over S.

To construct source patterns to our target patterns, each target pattern is trans-
formed into an application condition over the left rule side using the L-construction.
Due to the nature of the L-construction, we create at most one source pattern per
target pattern transformation.

Lemma 22 (creation of source patterns). Let tar = ∃(t ∶ R ↪ T, acT) be a target pattern
specific to a forbidden pattern F and a rule b = ⟨(L ↩ K ↪ R), acL, true⟩ with a reduced
rule b∗ = ⟨(L∗ ↩ K∗ ↪ R∗)⟩ of its plain rule and constructed as described above. Further,
let acT be a composed partial negative application condition acT = PShift(t+, ac ′T) with ac ′T
being a composed total negative application condition over T∗. Then we have:

1. L(b,∃t) is a source pattern and L(b,∃t) = false or L(b,∃t) = ∃s.
2. For the latter case, src = ∃(s, PShift(s+, L(b ′, ac ′T))) is a source pattern, with b ′ =
⟨S∗ ↩ K ′ ↪ T∗⟩ being the rule constructed via the pushout complement (1) and the
pushout (2) and s+ ∶ S∗ ↪ S such that S⇒b ′,s+,t+ T.

3. For each direct graph transformation G⇒b,m,m ′ H: m ⊧ src⇔ m ′ ⊧ tar.
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o

s+

��

L(b ′ , ac ′T)▷ K ′ �
r ′
//?

l ′
oo T∗ �

t+   

◁ac ′T

G S?
qoo K ′′ �

r ′′
//?

l ′′
oo T �

q ′⊧acT

// H

=

Proof. First, we will show that the construction yields the required structure.
We distinguish two cases:

1. ⟨r, t⟩ does not have a pushout complement. Then L(b,∃t) = false. Since false
is a source pattern, this case yields the required structure.

2. ⟨r, t⟩ has a pushout complement. Then, by constructing the pushout (S, l ′′, s),
we gain L(b,∃t) = ∃(s ∶ L ↪ S), which already is a source pattern. Fur-
ther, L(b,∃t) = ∃s implies S ⇒b,s,t T and, because of the reduced rule b∗,
S⇒b∗,s○l+,t○r+ T. With t ○ r+ = t+ ○ t∗ from the construction of the target pattern
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Inductive Invariant Checking with Partial Negative Application Conditions

and, consequently, the existence of the pushout complement of ⟨t+ ○ t∗, r∗⟩,
we can conclude the existence of the pushout complement of ⟨t∗, r∗⟩ to the
pushout (1). This shows the existence of the rule b ′ = ⟨S∗ ↩ K ′ ↪ T∗⟩.
Because of the construction of b ′ and since S ⇒b∗,s○l+,t○r+ T, we can con-
clude the existence of the pushout complement of ⟨r ′, t+⟩ and hence, the
existence of an injective morphism s+ ∶ S∗ ↪ S such that S ⇒b ′,s+,t+ T. Then,
PShift(s+, L(b ′, ac ′T)) is a composed partial negative application condition
over S and src = ∃(s, PShift(s+, L(b ′, ac ′T))) is a source pattern.

Furthermore, for each direct graph transformation G⇒b,m,m ′ H we have:

m ′ ⊧ tar

⇐⇒ m ′ ⊧ ∃(t ∶ R ↪ T, acT)
⇐⇒ m ′ ⊧ ∃(t, PShift(t+, ac ′T)) (acT = PShift(t+, ac ′T))
⇐⇒ m ′ ⊧ ∃(t, Shift(t+, ac ′T)) (Lemma 13)
⇐⇒ ∃q ′(m ′ = q ′ ○ t ∧ q ′ ⊧ Shift(t+, ac ′T))
⇐⇒ ∃q ′(m ′ = q ′ ○ t ∧ q ′ ○ t+ ⊧ ac ′T)
⇐⇒ ∃q(m = q ○ s ∧ q ○ s+ ⊧ L(b ′, ac ′T)) (Lemma 37, S⇒b ′,s+,t+ T)
⇐⇒ ∃q(m = q ○ s ∧ q ⊧ PShift(s+, L(b ′, ac ′T)))
⇐⇒ m ⊧ ∃(s ∶ L ↪ S, PShift(s+, L(b ′, ac ′T)))
⇐⇒ m ⊧ src

Such a source pattern represents graphs before the application of the rule in
question which leads to graphs satisfying the forbidden pattern. To also take left
application conditions into account, they need to be transformed via Shift(s, acL)
into conditions over the source pattern. For details, we refer to Lemma 42 in
Appendix B.

In summary, the source and target patterns src and tar represent a correct rule
application of a rule b leading to the existence of the forbidden pattern F. To
represent all possible rule applications, i.e. all graphs G and H with G ⇒b H, we
need to consider all target patterns and their corresponding source patterns.

4.3. Step 4: Analysis of Source Patterns and Counterexamples

Each target pattern and corresponding source pattern specific to a rule and a
forbidden pattern specify a counterexample for our inductive invariant, i.e. a
situation where a rule application leads to the occurrence of a forbidden pattern Fi.
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4. Inductive Invariant Checking

To investigate whether this is indeed a violation of the inductive invariant F under
G, the following three conditions are considered:

1. The target pattern also violates the composed guaranteed pattern.
2. The source pattern violates the composed guaranteed pattern.
3. The source pattern violates the composed forbidden pattern.

Theorem 23 (inductive invariant checking). Let GTS be a graph transformation system
and F = ⋀i∈I ¬Fi and G = ⋀j∈J ¬Gj be a composed forbidden and composed guaranteed
pattern. Let, for each rule b ∈ B and for i ∈ I, srcb,i (tarb,i) be the set of source (target)
patterns constructed from the pair (b, Fi) and src∅,b,i (tar∅,b,i) be the set of these source
(target) patterns reduced to graph constraints.

GTS preserves F under G if, for all reduced source patterns src∅ created from a pair of a
rule and a forbidden pattern (b, Fi) and the corresponding reduced target pattern tar∅, one
of the following conditions holds:

1. ∃k(k ∈ J ∧ tar∅ ⊧ Gk)
2. ∃k(k ∈ J ∧ src∅ ⊧ Gk)
3. ∃k(k ∈ I ∧ src∅ ⊧ Fk)

Proof. By Lemma 18, the preservation of F under G by GTS is implied by (for each
rule b ∈ B and with k, k ′ ∈ I):

∀G, H((G b⇒ H) Ô⇒ (∃j(H ⊧ Fj) ⇒ ∃k(H ⊧ Gk ∨G ⊧ Gk ∨G ⊧ Fk)))

Consider an arbitrary rule b = ⟨(L ↩ K ↪ R), acL, true⟩ from B and graphs G, H
with G ⇒b H and ∃k ′(H ⊧ Fk ′) with, for ease of reading, Fk ′ = F. As a forbidden
pattern, F has the form F = ∃(∅ ↪ P, acP) with acP being a composed negative
application condition.

∅

=

△acP
△acTj

� iR //
�

iP
��

R�

tj

��

�

m ′

��

P �

p ⊧ acP //

�

t ′j
// Tj �

h⊧ acTj

&&

=

H

From G
b⇒ H, we conclude the existence of a comatch m ′ ∶ R ↪ H. By construction

of target patterns (Lemma 20), we have a number of target patterns tarj and with
H ⊧ F we gain ∃j(j ∈ J ∧m ′ ⊧ tarj). Consequently, there is a target pattern tar = ∃(t ∶
R ↪ T, acT) with m ′ ⊧ tar for the specific tarj = tar.
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By construction of source patterns (Lemma 22), we get a source pattern src with
src ∈ srcb,k ′ (remember F = Fk ′). Note that src cannot be false, as this would con-
tradict G ⇒b H. With G ⇒b,m,m ′ H, where m is a monomorphism m ∶ L ↪ G, and
m ′ ⊧ tar, we get m ⊧ src.

By precondition, one of the following cases is true:

1. There is a k ∈ J such that tar∅ ⊧ Gk. Remember that tar∅ = ∃(∅ ↪ T, acT) is
the reduction of tar to a pattern. By Lemma 17, m ′ ⊧ tar implies H ⊧ tar∅ and
with tar∅ ⊧ Gk and by Definition 15 we have H ⊧ Gk, which concludes this
case.

2. There is a k ∈ J such that src∅ ⊧ Gk. By Lemma 17, m ⊧ src implies G ⊧ src∅
and with src∅ ⊧ Gk and by Definition 15 we have G ⊧ Gk, which concludes
this case.

3. There is a k ∈ I such that src∅ ⊧ Fk. By Lemma 17, m ⊧ src implies G ⊧ src∅
and with src∅ ⊧ Fk and by Definition 15 we have G ⊧ Fk, which concludes this
case.

This shows that GTS preserves F under G, if the condition from Theorem 23

holds. In other words, F is an inductive invariant for GTS under G. The con-
struction of target and source patterns and the verification of this condition by
application of Theorem 16 is, in short, the essence of the Invariant Checking al-
gorithm. On the other hand, source and target patterns not discarded by that
conditions are counterexamples for the inductive invariant.

Example 24. Figure 2 shows a source and target pattern pair src and tar created from the
forbidden pattern F and rule in Examples 4 and 7. In tar, the condition ∃t is one amalga-
mation of F and the right rule side (Lemma 20, step 1); ¬∃p is the pattern’s application
condition transformed with PShift over t+ (Lemma 20, step 2). Since the forbidden pattern
can be found in the source pattern (src∅ ⊧ F), this counterexample is discarded by the
analysis in Theorem 23.
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:P  :I  :C :P :I  :C  

𝑡𝑎𝑟 =  ∃(𝑡, ¬∃𝑝) 

:P  :I  :C  :P  :I  

:P  :I  

:C 

:O 

↪
 

↩ 

𝑠𝑟𝑐 =  ∃(𝑠, ¬∃𝑝′) 

𝑝′ = 〈𝑠+, 𝑏′〉 

𝑠+ 𝑏′ 

𝑠: 𝐿 ↪ 𝑆 ⇒ ↪
 

𝑙+ ↪
 

𝑟+ 

:P  :I  :P  :I  :C  ↪ 
𝑡+ 

𝑡: 𝑅 ↪ 𝑇 

:P  :I  

:C 

:O 

↪
 𝑏 

𝑝 = 〈𝑡+, 𝑏〉 

𝐿∗ = 𝑆∗ 𝑅∗ = 𝑇∗ 

𝐿 𝑅 

Figure 2: Source and target pattern pair created from a rule and a forbidden pattern

Because the implication checks (Theorems 16 and 23) compare only individ-
ual patterns and disregard more complex interdependencies and satisfiability of
multiple patterns, this algorithm may still produce false negatives (i.e., spurious
counterexamples). Our advanced implication check then serves to reduce this num-
ber and may also be applied to reduce the number of forbidden patterns to be
analyzed by subsuming some of them. Since the general concept has already been
introduced by Pennemann et. al. in [15], we do not discuss it here. However, our
technique is safe in the sense that all violations will be reported.
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5. Evaluation and Discussion

To evaluate our results, we employ three case studies: The first example carplatooning
describes rules and constraints in a car platooning system. It was employed in the
context of the SeekSat/ProCon tool [15] and was originally described in [12]. In
order to conform to our restrictions it had to be adjusted, resulting in the addition
of twelve new constraints. Our second and third case study are a simple and
complex example for verification of behavior preservation of model transformations
by bisimulation with the simple case initially employed by us in [10] and both
examples described in [6]. In the first case (MT - Simple), behavioral equivalence
between single lifelines and automata derived by a triple graph grammar (TGG)
is proven. In the more complex example (MT - Complex), behavioral equivalence
between sequence diagrams with multiple lifelines and networks of automata is
proven. In both cases the check involves two inductive invariant checks: one for the
TGG generating all possible model pairs and one for the Semantics of any possible
pair of models to prove bisimilarity.

The first point of reference for our evaluation is our improved inductive invari-
ant checker in its basic variant (invcheck-total). We also compare variants employing
advanced implication checks (invcheck-total/impl), partial negative application condi-
tions (invcheck-partial), and both (invcheck-partial/impl). On the other hand, the former
version of our inductive invariant checker [2] only supported a restricted form of
negative application conditions for constraints and rules and was thus not expres-
sive enough for the considered case studies.

In addition, we will consider the SeekSat/ProCon tool [15, 11], which is able
to prove correctness of graph programs with respect to pre- and postconditions
specified as nested graph constraints. To verify an inductive invariant (F ) of a graph
transformation system (GTS) with guaranteed constraints (G), the equivalent check
contains a graph program nondeterministically choosing a rule from GTS, the
precondition {F ∧G} and the postcondition {F ∨¬G}. While the technique behind
SeekSat/ProCon is more expressive than our approach, we use this comparison
to demonstrate the relevance of our more specialized tool for the verification of
certain cases where that level of expressiveness is not needed.

Besides the evaluation of the case studies as a whole, we also want to study the
impact of the complexity of the checking problem by considering the sum of all
possible amalgamations between a forbidden pattern and the right side of a rule
and the number of total negative application conditions for those amalgamations.
To get more fine-grained results, we separated some examples into multiple cases
by splitting postconditions (⋀i∈I Fi) ∨ ¬G into less complex i subproblems with
postconditions Fi ∨¬G or by considering rules in a set separately.
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Table 1: Complexity of verification problems and results of evaluated algorithms

Example Check Complexity time (s) result time (s) result time (s) result time (s) result time (s) result
MT - Simple - Semantics subproblem 4 20 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 4 20 true <1 true <1 true <1 true <1 true
MT - Complex - TGG subproblem 4 <1 true <1 true <1 true <1 true <1 true
MT - Complex - TGG subproblem 4 <1 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 5 10 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 5 9 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 11 40 true <1 true <1 true <1 true <1 true
MT - Complex - TGG subproblem 11 <1 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 12 out of memory timeout <1 false negatives timeout <1 true
MT - Complex - Semantics subproblem 17 17 true <1 false negatives <1 false negatives <1 true <1 true
MT - Complex - TGG subproblem 20 timeout <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 30 20 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 70 40 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 72 timeout <1 false negatives 1 false negatives 1,5 true 1,5 true
MT - Simple - Semantics subproblem 78 6,5 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 188 out of memory 1,5 false negatives 2,5 false negatives <1 true <1 true
Car Platooning subproblem 258 <1 true <1 true <1 true <1 true <1 true
Car Platooning subproblem 610 <1 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 807 timeout <1 true <1 true <1 true <1 true
Car Platooning complete 947 <1 false <1 false negatives <1 false negatives 3 false 3 false
MT - Simple - TGG subproblem 2778 220 true 1,5 false negatives 1 false negatives 1,5 true 1 true
MT - Simple - TGG subproblem 2778 226 true 1,25 false negatives 1 false negatives 1,25 true 1 true
MT - Simple - Semantics complete 3870 timeout 1,5 true 1 true 1,5 true 1 true
MT - Simple - TGG complete 5556 562 true 2 false negatives 2 false negatives 2,25 true 1,75 true
MT - Complex - Semantics subproblem 607312 out of memory timeout 90 false negatives timeout <1 true
MT - Complex - Semantics complete 607500 out of memory timeout 95 false negatives timeout <1 true
MT - Complex - TGG complete 1817622 timeout timeout ~100min true timeout ~50min true

SeekSat/ProConCharacteristics
without advanced implication check with advanced implication check
Invcheck-total Invcheck-partial Invcheck-total/impl Invcheck-partial/impl

The experiments were executed on a computer with an Intel Core-i7-2640M
processor with two cores at 2,8 GHz, 8 GB of main memory and running Eclipse
4.2.2 and Java 8 with a limit of 2 GB on Java heap space. All values were rounded
and values under a second were not distingiuished. Timeout refers to a forced
timeout issued by the tool (SeekSat/ProCon) or manual abortion (our tool) – for
the related cases in our tool after more than two days of calculation. Out of memory
means that memory exceeded the Java heap space limit of 2 GB.

Table 1 shows an overview of the verification of our complete examples (marked
as complete; in gray) and a more detailed list of subproblems ordered by complexity
(marked as subproblem), respectively. All algorithms perform comparably well for
the car platooning example, with SeekSat/ProCon performing significantly better
for the unadjusted version than our algorithms. However, for the other complete
cases our tool terminates while SeekSat/ProCon does not.

It is important to note that the inductive invariant checker without advanced
implication checks yields false negatives for certain subproblems. Even more im-
portantly, these false negatives do not occur when using the variant with advanced
implication checks. This demonstrates that the improvement in accuracy due to
advancement in implication checks is indeed relevant for the case studies.

Further, the results demonstrate that the complex model transformation case
study cannot be verified by the inductive invariant checker variants without partial
negative application conditions, as these attempts were aborted after more than
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two days of calculation without a result. In contrast to that, a verification time of
100 minutes (for the longest case) when employing partial negative application
conditions shows a drastic improvement in scalability for the considered more
complex cases. The additional use of advanced implication checks does then not
only eliminates false negatives, but, for one case, also halves the verification time,
showing another notable effect on performance.

While these case studies show both our improvements and the relevance of
verification for specifications that conform to our restrictions, the data is not com-
plete and heterogeneous enough to derive claims for the general case. While Seek-
Sat/ProCon’s more general approach is also successfully applicable for specifi-
cations that are significantly more expressive, our tool has been optimized for a
particular class of problems present in the two more complex case studies and their
verification only succeeded with our tool.
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6. Related Work

As already discussed in Section 5, the SeekSat/ProCon tool [15, 11] is more general
than our approach and thus is in principle capable of addressing the case studies.
However, the limited scalability of the SeekSat/ProCon tool demonstrates that
there is still a need for a tool optimized for a particular class of problems that
scales up to the presented two more complex case studies.

For all other automated approaches that approach graph transformation systems
with infinite state space [17, 5, 14, 4, 2, 13, 1], it holds that, in contrast to the ap-
proaches considered in the evaluation, they cannot be used for the case studies
which require unrestricted negative application conditions: The model checking
approach [17] employing abstraction based on the summarization in shape analysis
and the model checking approach [5] employing a neighborhood abstraction, but
both do not support negative application conditions for the constraints or rules.
The tool Uncover [14] supports well-structured graph transformation systems that
can only be established for negative application conditions which forbid the exis-
tence of edges but not of nodes. The Augur tool [13, 1], which constructs a over-
approximation in form of a so-called Petri graph, also considers only graph trans-
formation systems without negative application conditions. Finally, the RAVEN
tool [4] can check only invariants for graph transformation systems without nega-
tive application conditions whose reachable graphs are accepted by a finite graph
automaton. Since two of our case studies describe reachable graphs by TGGs, they
cannot be covered by a finite graph automaton.

For additional discussion of related work with respect to the general concept of
inductive invariants, we refer to the respective section in [2].
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7. Conclusion and Future Work

In this paper, we presented several improvements for the inductive invariant
checker for graph transformation systems introduced in [2]. Support for more
expressive negative application conditions in constraints and rules was shown to
be necessary to address the considered case studies at all. The introduction of par-
tial negative application conditions allowed avoiding the explicit representation of
a large number of application conditions, which considerably improved scalability.
The addition of advanced implication checks improved the accuracy, so that no
false negatives are reported for the case studies.

In addition we demonstrated the outlined improvements by means of three case
studies and compared our approach for a restricted class of problems with an
existing tool that targets more general problems. For the more complex problems
considered, our approach was still able to check them; the other tool was not.

While the results are promising, the evaluation also raises a number of possible
future directions such as employing even more partial shifts in our constructions,
and experimenting with the parallel execution of alternative strategies.
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A. Additional Definitions

This section lists additional basic definitions and facts from [7] and [8] that are not
included in the main report. For omitted proofs, we refer to the respective sources.

Many of the following notions also exist in more general forms which can be
described by the concepts of category theory. However, this report is only concerned
with the categories of typed graphs, or GraphsTG (for a type graph TG), although
generalization of its concepts may be possible. Hence, some of the more general
definitions, facts and lemmas taken from [7] and [8] have been slightly adjusted to
fit this scope.

Definition 25 (graph [7]). A graph G = (V, E, s, t) consists of a set V of nodes (also
called vertices), a set E of edges and two functions s, t ∶ E → V, the source and target
functions.

Definition 26 (graph morphism [7]). Given graphs G1, G2 with Gi = (Vi, Ei, si, ti) for
i = 1, 2, a graph morphism f ∶ G1 → G2, f = ( fV , fE) consists of two functions fV ∶ V1 →
V2 and fE ∶ E1 → E2 that preserve the source and target functions, i.e. fV ○ s1 = s2 ○ fE and
fV ○ t1 = t2 ○ fE.

A graph morphism f is injective (or surjective) if both functions fV , fE are injective
(or surjective, respectively); f is called isomorphic (or an isomorphism) if it is bijective,
which means both injective and surjective. We use the terms injective morphism and
monomorphism synonymously and describe the set of all monomorphisms withM.

Fact 27 (composition of graph morphisms [7]). Given two graph morphisms f =
( fV , fE) ∶ G1 → G2 and g = (gV , gE) ∶ G2 → G3, the composition g ○ f = (gV ○ fV , gE ○ fE) ∶
G1 → G3 is again a graph morphism.

Definition 28 (typed graph and typed graph morphism [7]). A type graph is a
distinguished graph TG = (VTG, ETG, sTG, tTG). VTG and ETG are called the vertex and
the edge type alphabets, respectively.

A tuple (G, type) of a graph G together with a graph morphism type ∶ G → TG is then
called a typed graph.

Given typed graphs GT
1 = (G1, type1) and GT

2 = (G2, type2), a typed graph morphism
f ∶ GT

1 → GT
2 is a graph morphism f ∶ G1 → G2 such that type2 ○ f = type1.

Definition 29 (jointly surjective (adjusted from [7])). A graph morphism pair (e1, e2)
with ei ∶ Ai → B (i = 1, 2) is called jointly surjective if, for all g, h ∶ B → C with
g ○ ei = h ○ ei for i = 1, 2, we have g = h.

Definition 30 (pushout [7]). Given morphisms f ∶ A → B and g ∶ A → C in a category
C, a pushout (D, f ′, g ′) over f and g is defined by
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• a pushout object D and
• morphisms f ′ ∶ C → D and g ′ ∶ B → D with f ′ ○ g = g ′ ○ f

such that the following unsiversal property is fulfilled: For all objects X and morphisms
h ∶ B → X and k ∶ C → X with k ○ g = h ○ f , there is a unique morphism x ∶ D → X such
that x ○ g ′ = h and x ○ f ′ = k.

Fact 31 (pushouts [7]). Given morphisms f ∶ A → B and g ∶ A → C and a pushout
(D, f ′, g ′) over f and g, we have the following properties:

1. If f is injective (or surjective), then f ′ is also injective (or surjective, respectively).
2. The pair ( f ′, g ′) is jointly surjective, i.e. for each x ∈ D there is a preimage b ∈ B

with g ′(b) = x or c ∈ C with f ′(c) = x.
3. If f is injective and x ∈ D has preimages b ∈ B and c ∈ C with g ′(b) = f ′(c) = x,

then there is a unique preimage a ∈ A with f (a) = b and g(a) = c.
4. If f and hence also f ′ is injective, then D is isomorphic to D ′ = C ⊍ B ∖ f (A).

When trying to determine the applicability of graph rules, as will be explained
in the following, the reverse construction of a pushout is required [7]. This notion
is defined as the pushout complement.

Definition 32 (pushout complement [7]). Given morphisms f ∶ A → B and n ∶ B → D,

then A
m→ C

g
→ D is the pushout complement of f and n if (1) below is a pushout:

A

(1)

f //

m
��

B

n
��

C g
// D

Fact 33 (application of graph rules [8]). The application of a graph rule b = ⟨p, acL, acR⟩
amounts to the following steps:

1. Find a match m ∶ L → G satisfying acL as well as the gluing condition:
Dangling condition: No edge in G ∖m(L) is incident to a node in m(L) ∖m(K).
Identification condition: For all distinct items x, y ∈ L, m(x) = m(y) only if x, y ∈ K.
(This condition is understood to hold separately for nodes and edges.)

2. Remove m(L ∖K) from G, yielding a graph D and add R ∖K, yielding a graph H.
3. Check whether the comatch m ′ ∶ R → H satisfies acR.

Due to our restriction on injective matches and comatches, we do not need
to consider the identification condition. Note that the satisfiability of the gluing
condition is equivalent to the existence of the context graph D with the pushout
(1), i.e. the existence of the corresponding pushout complement [7].
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A. Additional Definitions

Definition 34 (graph transformation system [7]). A graph transformation system
GTS = (B) consists of a set of graph rules B. A typed graph transformation system
GTS = (B, TG) consists of a set of gprah rules B and a type graph TG.
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B. Additional Lemmas and Constructions

This section lists additional lemmas and constructions, which are not included in
the main report and are mainly relevant for proofs.

Construction 35 (construction of reduced rules). Given a rule b = ⟨L ↩ K ↪ R⟩, a
reduced rule b∗ = ⟨L∗ ↩ K∗ ↪ R∗⟩ of b can be constructed as follows:

1. Create K∗ as a subset of K containing at least all nodes n that fulfil at least one of the
following two conditions:

a) The image of n under r is adjacent to an edge in R ∖ r(K).
b) The image of n under l is adjacent to an edge in L ∖ l(K).

2. Create K∗
r∗↪ R∗

r+↪ R as the pushout complement of k+ and r.

3. Create K∗
l∗↪ L∗

r+↪ L as the pushout complement of k+ and l.

Proof. We have to show that for all graphs G, H and all monomorphisms m, m ′, it
holds that G⇒b,m,m ′ H⇔ G⇒b∗,m○l+,m ′○r+ H. Note that both pushout complements
(1) and (2) exist by construction of K∗.

L

(1)

m

m

��

K

(2)

� r //?loo
�

k

��

R �

m ′

��

L∗
?

l+
OO

K∗
?

k+
OO

� r∗ //?
l∗
oo R∗

?

r+
OO

G D?
goo � h // H

Only if. Since (1) is a pushout by construction and (G, g, m) is a pushout by pre-
condition, by pushout composition, (1) + (G, g, m), or (G, g, m ○ l+) is a pushout.
Since (2) is a pushout by construction and (H, h, m ′) is a pushout by precondition,
by pushout composition, (2) + (H, h, m ′), or (H, h, m ′ ○ r+) is a pushout, so that
G⇒b∗,m○l+,m ′○r+ H.

If. Since (G, g, m ○ l+), or (1) + (G, g, m) is a pushout by precondition and (1)
is a pushout by construction, by pushout decomposition (G, g, m) is a pushout.
Since (H, h, m ′ ○ r+), or (2) + (H, h, m ′) is a pushout by precondition and (2) is a
pushout by construction, by pushout decomposition (H, h, m ′) is a pushout, so that
G⇒b,m,m ′ H. This conlcudes the proof.

The following lemmas and constructions are concerned with the transformation
on application conditions over morphisms and rules.
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Lemma 36 (shift of application conditions over morphisms, adjusted from [8]).
There is a Shift-construction such that, for each application condition ac over P and for
each morphism b ∶ P → P ′, Shift transforms ac via b into an application condition with
only monomorphisms Shift(b, ac) over P’ such that, for each morphism n ∶ P ′ → H with
n ∈ M, n ○ b ⊧ ac⇔ n ⊧ Shift(b, ac).

Pac▷ b //

n○b $$
=

P ′◁Shift(b,ac)l

nzz
H

Construction (Shift-construction, adjusted from [8]). The Shift-construction is induc-
tively defined as follows:

P

(1)

△ac

b //

a
��

P ′�

a ′
��

C �
b ′
// C ′

Shift(b, true) = true.
Shift(b,∃(a, ac)) = ⋁(a ′,b ′)∈F ∃(a ′, Shift(b ′, ac)) if
F = {(a ′, b ′)∣(a ′, b ′) are jointly surjective and b ′ ∈ M and
a ′ ∈ M and (1) commutes} ≠ ∅ and false, otherwise.
Shift(b,¬ac) = ¬Shift(b, ac).
Shift(b,⋀i∈I aci) = ⋀i∈I Shift(b, aci).

Proof. The proof in [8] can be adjusted to the special case where only monomor-
phisms are concerned.

Lemma 37 (shift of application conditions over rules [8, 11]). There is a L-construction
such that, for each rule b and each application condition ac over R, L transform ac via b
into L(b, ac) oder L such that, for each direct transformation G ⇒b,m,m ′ H, we have
m ⊧ L(b, ac) ⇔ m ′ ⊧ ac.

L

(1) (2)

L(b,ac)▷

m ⊧ L(b,ac)
��

K � r //?loo

��

R◁ac

m ′ ⊧ ac
��

G D � //?oo H

Construction (L-construction [8, 11]). The L-construction is inductively defined:

L

(2)a ′
��

K

(1)

� r //?loo

��

R

a
��

L ′L(b ′,ac)▷ K ′ �
r ′
//?

l ′
oo R ′◁ac

L(b, true) = true.
L(b,∃(a, ac)) = ∃(a ′, L(b ′, ac)) (with b ′ =
⟨L ′ ↩ K ′ ↪ R ′⟩ constructed via the pushouts (1)
and (2)) if ⟨r, a⟩ has a pushout complement (1) and
false, otherwise.
L(b,¬ac) = ¬L(b, ac).
L(b,⋀i∈I aci) = ⋀i∈I L(b, aci).

The following two lemmas are concerned with the structure-preserving proper-
ties of both the Shift- and L-construction with respect to composed total negative
application conditions.
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Lemma 38. Let ac = ∃(a ∶ P ↪ C, acC) with graphs P, C, an application condition acC
and a monomorphism a ∶ P ↪ C be an application condition. For each graph P ′ and each
monomorphism b ∶ P ↪ P ′, there is a jointly surjective morphism pair (b ′, a ′) with a ′ ∈ M
and b ′ ∈ M such that b ′ ○ a = a ′ ○ b. Also, Shift(b, ac) does not produce the trivial case
false.

Given a composed total negative application condition acN = ⋀i∈I ¬∃(xi ∶ N ↪ Xi)
with graphs N, Xi, monomorphisms xi and an index set I, for each graph N ′ and each
monomorphism n ∶ N ↪ N ′ the application condition ac ′N = Shift(n, acN) is a composed
total negative application condition.

Proof. Given ac = ∃(a ∶ P ↪ C, acC) and a monomorphism b ∶ P ↪ P ′, we can
construct the pushout (C ′, b ′, a ′) over b, a. By Fact 31, we have the pushout object
C ′ and the jointly surjective morphism pair (b ′, a ′) with a ′ ∈ M and b ′ ∈ M and
b ′ ○ a = a ′ ○ b. Considering Lemma 36, we have F = {(a ′, b ′) ∈ E ′∣b ′ ∈ M and a ′ ∈
M and (1) commutes} ≠ ∅. Therefore, Shift(b, ac) does not produce the trivial case
false (see the construction to Lemma 36). This shows the first property and can be
extended to Boolean combinations of application conditions.

P

(1)

△acC

b //

a
��

P ′�

a ′
��

C �
b ′
// C ′

For a composed total negative application condition acN = ⋀i∈I ¬∃(xi ∶ N ↪ Xi), con-
sider the following diagram and equations, with Fi = {(x ′i , n ′i ) ∈ E

′∣x ′i ∈ M and n ′i ∈
M and (1) commutes} (see construction to Lemma 36).

N

(1)

n //

xi

��

N ′�

x ′i
��

Xi
�

n ′i
// X ′i
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Shift(n, acN) = Shift(n,⋀
i∈I
¬∃(xi ∶ N ↪ Xi))

= ⋀
i∈I
(Shift(n,¬∃(xi ∶ N ↪ Xi))) (Lemma 36)

= ⋀
i∈I
(¬Shift(n,∃(xi ∶ N ↪ Xi))) (Lemma 36)

= ⋀
i∈I
(¬ ⋁
(x ′i ,n ′i )∈Fi

∃(x ′i , Shift(n ′i , true))) (Fi ≠ ∅, see proof above)

= ⋀
i∈I
(¬ ⋁
(x ′i ,n ′i )∈Fi

∃x ′i )

= ⋀
i∈I
( ⋀
(x ′i ,n ′i )∈Fi

¬∃x ′i ) (De Morgan’s laws)

As a conjunction of conjunctions of negative application conditions, ac ′N = Shift(n, acN)
is again a composed total negative application condition. This concludes the
proof.

Lemma 39. Given a composed total negative application condition ac = ⋀i∈I ¬∃(xi ∶ R ↪
Xi), for each rule b = ⟨(L ↩ K ↪ R), acL, true⟩, L(b, ac) is a composed total negative
application condition.

Proof. Consider the following diagram, illustrating the monomorphisms xj for
which ⟨r, xj⟩ has a pushout complement (1). We need to distinguish the cases
where the pushout complement to (1) exists from the cases where it does not.
Hence, we separate the index set I in two disjoint sets J ⊆ I and K ⊆ I with J ∩K = ∅
and J ∪ K = I such that J = {i ∈ I ∣ ⟨r, xi⟩ has a pushout complement (1)} and
K = {i ∈ I ∣ ⟨r, xi⟩ does not have a pushout complement (1)}.

L

(2)

�

x ′j
��

K

(1)

� r //?loo
�

��

R�

xj

��
X ′j Dj

�

r ′j
//?

l ′j
oo Xj
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L(b, ac) = L(b,⋀
i∈I
¬∃(xi ∶ N ↪ Xi))

= ⋀
i∈I
(L(b,¬∃(xi ∶ N ↪ Xi)) (Lemma 37)

= ⋀
i∈I
(¬L(b,∃(xi ∶ N ↪ Xi)) (Lemma 37)

= ⋀
j∈J
(¬L(b,∃(xj ∶ N ↪ Xj)) ∧ ⋀

k∈K
(¬L(b,∃(xk ∶ N ↪ Xk))

= ⋀
j∈J
(¬∃(x ′j ∶ N ↪ X ′j )) ∧ ⋀

k∈K
(¬false)

= ⋀
j∈J
(¬∃(x ′j ∶ N ↪ X ′j )) ∧ true

= ⋀
j∈J
(¬∃(x ′j ∶ N ↪ X ′j ))

If J = ∅, L(b, ac) = ⋀j∈J(¬∃(x ′j ∶ N ↪ X ′j )) is true, which is a combined negative
application condition (Definition 8). If J ≠ ∅, L(b, ac) = ⋀j∈J(¬∃(x ′j ∶ N ↪ X ′j ))
has the structure required in Definition 8, making it a composed total negative
application condition.

The following lemma and construction offer a means of creating equivalent
(with respect to a morphism) partial application conditions from total application
conditions.

Lemma 40 (creation of partial application conditions). There is a PShift-construction
such that, for each application condition ac over P ′ and for each morphism p ′ ∶ P ′ ↪ P,
PShift transforms ac via p ′ into a partial application condition PShift(p ′, ac) over P such
that, for each morphism n ∶ P ↪ H with n ∈ M, n ○ p ′ ⊧ ac⇔ n ⊧ PShift(p ′, ac).

P ′ac▷

n○p ′ $$

p ′ // P◁PShift(p ′,ac)l

nzz
H

Construction (PShift-construction). The PShift-construction is defined as follows:

P ′

△ac

�

a
��

� p ′ // P
o

c=⟨p ′,a ′⟩�
C

PShift(p ′, true) = true.
PShift(p ′,∃(a, ac)) = ∃(c, ac) with c = ⟨p ′, a⟩.
PShift(p ′,¬ac) = ¬PShift(p ′, ac) and PShift(p ′,⋀i∈I aci) =
⋀i∈I PShift(p ′, aci).
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Proof. (Adopted from Lemma 36 [8].) The statement is proven by structural induc-
tion:

Basis. For ac = true, the statement holds.
Inductive step. For an application condition ac = ∃(a, ac ′), we have to show n ○ p ′ ⊧

ac⇔ n ⊧ PShift(p ′,∃(a, ac ′)).
Only if. Let n ○ p ′ ⊧ ∃(a, ac ′). Consequently, there exists a monomorphism q ∶ C ↪

H such that n ○ p ′ = q ○ a and q ⊧ ac. Thus, by satisfiability of partial application
conditions, we have n ⊧ ∃(c, ac) with c = ⟨p ′, a⟩ and by construction we get n ⊧
PShift(p ′,∃(a, ac ′)).

If. Let n ⊧ PShift(p ′,∃(a, ac ′)). By construction, we have n ⊧ ∃(c, ac) with c =
⟨p ′, a⟩. By satisfiability of partial application conditions, we conclude the existence
of a monomorphisms q ∶ C ↪ H such that n ○ p ′ = q ○ a and q ⊧ ac. Thus, we have
p ′ ⊧ ac, which concludes the inductive proof.

To avoid unnecessary computational effort, partial application conditions can be
used instead of shifting total application conditions. The following lemma describes
this equivalence.

As opposed to the theorem presented in the short version, the following theorem
establishes a sufficient condition for checking implication of patterns for patterns
with composed total negative application conditions.

Theorem 41 (implication of patterns). Let C = ∃(∅ ↪ P, ac) and C ′ = ∃(∅ ↪ P ′, ac ′)
with composed total negative application conditions ac = ⋀i∈I ¬∃(P ↪xi Xi) and ac’ =
⋀j∈J ¬∃(P ′ ↪

x ′j X ′j ) for index sets I, J be two patterns. Then C ′ ⊧ C, if the following
conditions are fulfilled:

1. There exists a monomorphism m ∶ P ↪ P ′ such that:
2. With Shift(m,¬∃xi) = ⋀k∈Ki ¬∃(P

′ ↪x ′′ik X ′′ik) for a number of corresponding index
sets Ki, for each xi it holds that

∀k(k ∈ Ki ⇒ ∃j∃y(y ∶ X ′j ↪ X ′′ik ∧ x ′′ik = y ○ x ′j)).

P � m
//

�

xi

��

P ′�

x ′j
��

n
x ′′ik

~~
Xi
�

m ′ik
// X ′′ik

=
X ′j?y

oo

Proof. Assuming that the above conditions hold, we have to show ∀G(G ⊧ C ′ ⇒
G ⊧ C).

Consider an arbitrary graph G with G ⊧ C ′. By definition of satisfaction, we have
iG ⊧ C ′, implying the existence of a monomorphism g ′ ∶ P ′ ↪ G with g ′ ⊧ ac ′. By
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assumption, there is a monomorphism m ∶ P ↪ P ′. Then there exists a morphism g ∶
P → G with g = g ′ ○m. SinceM is closed under composition, g is a monomorphism.

P �

g
  
=

� m //
�

x

��

P ′
n

g ′

}}

�

x ′j

��

s

x ′′

��

= G =

X � //
/

q
??

X ′′
?

q ′′

OO

X ′j?y
oo

=

We will show g ⊧ ac by contradiction. Suppose g /⊧ ac, implying the existence
of a x = xi for some i ∈ I and a corresponding monomorphism q ∶ X ↪ G with
g = q ○ x, i.e. g /⊧ ¬∃x. For Shift(m,¬∃x) = ⋀k∈K ¬∃(P ′ ↪x ′′k X ′′k ) for an index set
K depending on x, we have g ′ ⊧ Shift(m,¬∃x) ⇔ g ′ ○ m ⊧ ¬∃(xi) (Lemma 36).
Since g = g ′ ○m, we have g ′ /⊧ Shift(m,¬∃x) and thus g ′ /⊧ ⋀k∈K ¬∃(P ′ ↪x ′′k X ′′k ).
This implies the existence of a x ′′ = x ′′k for some k ∈ K with g ′ /⊧ ¬∃(P ′ ↪x ′′ X ′′).
Then there exists a monomorphism q ′′ ∶ X ′′ ↪ G with g ′ = q ′′ ○ x ′′. By assumption,
there exists a monomorphism y ∶ X ′j ↪ X ′′ with x ′′ = y ○ x ′j for some j ∈ J. This
implies the existence of a monomorphism q ′ ∶ X ′j ↪ G with q ′ = q ′′ ○ y and thus
q ′ ○ x ′j = q ′′ ○ y ○ x ′j = q ′′ ○ x ′′ = g ′. Thus, g ′ /⊧ ¬∃x ′j for the specific j ∈ J and therefore
g ′ /⊧ ac ′. This is a contradiction, thus we have g ⊧ ac. With g ∶ P ↪ G and g ⊧ ac, we
get G ⊧ C, concluding the proof.

Theorem 41 describes a case for implication of patterns where both pattern
contain only composed total negative application conditions. It can be seen that the
creation of composed total negative application conditions from composed partial
negative application conditions requires a high effort and that the computational
effort for checking implication is also usually higher than for the partial case (cf.
Theorem 16) since all negative application conditions from the implied pattern
have to be shifted to the implying pattern.

Finally, the following lemma describes the translation of composed total negative
application conditions defined over a left rule side (as part of a graph rule) to
conditions over a source pattern.

Lemma 42 (transformation of left application conditions to source patterns). Let
scr ′ = ∃(sp ∶ L ↪ S, ac ′S) = L(b, tar) be a source pattern constructed from a target pattern
tar and a rule b = ⟨(L ↩ K ↪ R), acL, true⟩. Let ac ′S further be a composed partial negative
application condition. Then scr = ∃(sp ∶ L ↪ S, acS) with acS = ac ′S ∧ Shift(s, acL) is a
source pattern over L and we have:
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B. Additional Lemmas and Constructions

1. For each graph G and each monomorphism m ∶ L ↪ G: (m ⊧ src ′ ∧m ⊧ acL) ⇔ m ⊧
src.

2. For each each direct graph transformation G ⇒b,m,m ′ H we have: m ⊧ src⇔ m ′ ⊧
tar.

Proof. Since acL is a composed negative appplication condition, according to Lemma
38 Shift(s, acL) is a composed negative application condition. By definition of source
patterns, ac ′S is a composed negative application condition. Hence, ac ′S ∧Shift(s, acL)
is a composed negative application condition, which makes src = ∃(s ∶ L ↪
S, ac ′S ∧ Shift(s, acL)) a source pattern.

For the first property, we transform the left side of the equivalence as follows.

LacL▷
� s //�

m ⊧ acL ##
=

S◁acS = Shift(s,acL) ∧ac ′Sl

g ⊧ ac ′S{{
G

m ⊧ src ′ ∧m ⊧ acL

⇐⇒ m ⊧ ∃(s ∶ L ↪ S, ac ′S) ∧ m ⊧ acL

⇐⇒ ∃g(g ∶ S ↪ G ∧ m = g ○ s ∧ g ⊧ ac ′S) ∧ m ⊧ acL

⇐⇒ ∃g(g ∶ S ↪ G ∧ m = g ○ s ∧ g ⊧ ac ′S ∧ g ⊧ Shift(s, acL)) (Shift-lemma)
⇐⇒ ∃g(g ∶ S ↪ G ∧ m = g ○ s ∧ g ⊧ (ac ′S ∧ Shift(s, acL)))
⇐⇒ ∃g(g ∶ S ↪ G ∧ m = g ○ s ∧ g ⊧ acS)
⇐⇒ m ⊧ src

This shows the first property.
By the L-lemma, for each direct graph transformation G ⇒b,m,m ′ H we have

m ⊧ src ′ ⇔ m ′ ⊧ tar. From G ⇒b,m,m ′ H we get m ⊧ acL. With (m ⊧ acL ∧ m ⊧
src ′) ⇔ m ⊧ src from the first property, we have m ⊧ src⇔ m ′ ⊧ tar, concluding
the proof.

L�

sm ⊧ acL
��

acL◁ q

m ⊧ src

��

K � r //?loo
�

k
��

t

��

R�

t
��




m ′⊧tar

��

=
SacS◁
O

g ⊧ acS��

K ′ �
r ′
//?

l ′
oo T◁acT

G D?oo � // H
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