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Abstract. We introduce techniques for proving uniform termination of
graph transformation systems, based on matrix interpretations for string
rewriting. We generalize this technique by adapting it to graph rewriting
instead of string rewriting and by generalizing to ordered semirings. In
this way we obtain a framework which is inspired by the tropical and
arctic type graphs of [5] and introduces a new variant of arithmetic type
graphs. These type graphs can be used to assign weights to graphs and
to show that these weights decrease in every rewriting step in order to
prove termination. We present an example involving counters and discuss
the implementation in the tool Grez.

1 Introduction

For every computational formalism, the question of termination is one of the
most fundamental problems, consider for instance the halting problem for Tur-
ing machines. For graph transformation systems there has been some work on
termination, but this problem has received less attention than, e.g., confluence or
reachability analysis. There are several applications where termination analysis is
essential: one scenario is termination of graph programs, especially for programs
operating on complex data structures. Furthermore, model transformations, for
instance of UML models, usually require functional behaviour, i.e., every source
model should be translated into a unique target model. This requires termination
and confluence of the model transformation rules.

There is a huge body of termination results in string and term rewriting [2]
from which one can draw inspiration. Still, adapting these techniques to graph
transformation is often non-trivial. A helpful first step is often to modify these
techniques to work with cycle rewriting [20,16], which imagines the two ends of
a string to be glued together, so that rewriting is indeed performed on a cycle.

⋆ Research partially supported by DFG project GaReV.

http://arxiv.org/abs/1505.01695v3


In this paper we focus exclusively on uniform termination, i.e., there is only
a set of graph transformation rules, but no fixed initial graph, and the question
is whether the rules terminate on all graphs. All variants of the termination
problem, termination on all graphs as well as termination on a fixed set of initial
graphs, are undecidable [15].

In [5] we have shown how to adapt methods from string rewriting [18,13] and
to develop a technique based on weighted type graphs, which was implemented in
the tool Grez. Despite its simplicity the method is quite powerful and finds termi-
nation arguments also in cases which are difficult for human intuition. However,
there are some examples (see for instance the example discussed in Section 5)
where this technique fails. The corresponding techniques in string rewriting can
be seen as matrix interpretations of strings in certain semirings, more specifically
in the tropical and arctic semiring. Those semirings can be replaced by the arith-
metic semiring (the natural numbers with addition and multiplication) in order
to obtain a powerful termination analysis method for string rewriting [12,9].

Here we generalize this method to graphs. Due to their non-linear nature,
we have to abandon matrices and instead state a different termination criterion
that is based on weights of morphisms of the left-hand and right-hand sides of
rules into a type graph. Type graphs [6] are a standard tool for typing graph
transformation systems, but we are not aware of any case where they have been
used for termination analysis before [5].

By introducing weighted type graphs we generalize matrix interpretations
for string rewriting in two ways: first, we transform graphs instead of strings
and second, we consider general semirings. Our techniques work for so-called
strictly and strongly ordered semirings, which have to be treated in a slightly
different way. After introducing the theory we will discuss an extended example,
followed by a presentation of the implementation in the termination tool Grez.4

All proofs can be found in Appendix A.

Addendum: The original version of this paper contained an error, which meant
that the proofs of Lemmas 3 and 4 were flawed, making Theorems 1 and 2 incor-
rect as well. This was caused by an inadequate definition of strongly and strictly
ordered semirings and the fact that we allowed all kinds of weights, including
negative weights. These problems, including counterexamples, are explained in
detail in [10] and we would like to express many thanks to Jörg Endrullis and
Roy Overbeek for making us aware of these issues, enabling us to correct them
in the present version.

2 Preliminaries

2.1 Graphs and Graph Transformation

We first introduce graphs, morphisms, and graph transformation, in particular
the double pushout approach [7]. In the context of this paper we use edge-labeled,
directed graphs, but it is straightforward to generalize the results to hypergraphs.

4 http://www.ti.inf.uni-due.de/research/tools/grez/



Definition 1 (Graph). Let Λ be a fixed set of edge labels. A Λ-labeled graph
is a tuple G = 〈V,E, src, tgt , lab〉, where V is a finite set of nodes, E is a finite
set of edges, src, tgt : E → V assign to each edge a source and a target, and
lab : E → Λ is a labeling function.

As a notational convention, we will denote, for a given graph G, its compo-
nents by VG, EG, srcG, tgtG and labG, unless otherwise indicated.

Definition 2 (Graph morphism). Let G,G′ be two Λ-labeled graphs. A graph
morphism ϕ : G → G′ consists of two functions ϕV : VG → VG′ and ϕE : EG →
EG′ , such that for each edge e ∈ EG it holds that srcG′(ϕE(e)) = ϕV (srcG(e)),
tgtG′(ϕE(e)) = ϕV (tgtG(e)) and labG′(ϕE(e)) = labG(e).

We will often drop the subscripts V,E and simply write ϕ instead of ϕV , ϕE .
We work with standard double-pushout (DPO) graph transformation [7]. Note
that our termination results would still hold if we restricted to injective matches.
However, we can not verify instances where termination depends on injectivity
of matches (for this see [10]).

Definition 3 (Graph transformation). A graph transformation rule ρ con-
sists of two morphisms L �ϕL− I −ϕR� R, consisting of the left-hand side L,
the right-hand side R and the interface I. We require that I is discrete, i.e., it
consists only of nodes.

A match of a left-hand side in a graph G is a morphism m : L→ G. Given a
rule ρ and a match m : L → G, a graph H is the result of applying
the rule at the match, written G⇒m,ρ H (or G⇒ρ H if
m is arbitrary or clear from the context), if there exists
a graph C and morphisms such that the two squares in
the diagram on the right are pushouts in the category of
graphs and graph morphisms.

L I R

G C H

ϕL ϕR

m (po) (po)

A graph transformation system R is a finite set of graph transformation rules.
For a graph transformation system R, ⇒R is the rewriting relation on graphs
induced by those rules.

Intuitely in a graph transformation step from G to H , the images of all
elements of the left-hand side L, which are not present in the interface I are
deleted, and the right-hand side R is added, by gluing it to the interface.

Although the graph transformation systems themselves are untyped, our
method for termination analysis is based on type graphs [6]. For given graphs
G, T , where T is considered as a type graph, we say that G is typed over T when-
ever there is a morphism t : G → T . The morphism t will also be called typing
morphism. We need a way to compose and decompose typing morphisms.

Lemma 1. Let a pushout PO consisting of objects G0, G1, G2, G be given. Then
there exists a bijection between pairs of commuting morphisms t1 : G1 → T ,
t2 : G2 → T and morphisms t : G→ T (see diagram below).



G0

G1

G2

G T

ψ1

ψ2

ϕ1

ϕ2

t

t1

t2

(po)

For each t we obtain a unique pair of morphisms t1, t2 by composing with ϕ1 and
ϕ2, respectively. Conversely, for each pair t1, t2 of morphisms with t1◦ψ1 = t2◦ψ2

we obtain a unique t : G→ T as mediating morphism. In this case we will write
medPO (t1, t2) = t and med−1

PO (t) = 〈t1, t2〉.

2.2 Matrix Interpretations for String Rewriting

Our technique is strongly influenced by matrix interpretations for proving termi-
nation in string, cycle and term rewriting systems [12,16,9]. We will generalize
this technique, resulting in a technique for graph transformation systems that
has a distinctly different flavour than the original method. In order to point out
the differences later and motivate our choices, we will introduce matrix interpre-
tations first.

We are working in the context of string rewrite systems, where a rule is of
the form ℓ→ r, where ℓ, r are both strings over a given alphabet Σ. For instance,
consider the rule aa→ aba, which rewrites aaa⇒ abaa⇒ ababa 6⇒.

We first start with some preliminaries: let A,B be two square matrices A,B
over N0 of equal dimension n. We write A > B if A1,1 > B1,1 and Ai,j ≥ Bi,j
for all indices i, j with 1 ≤ i, j ≤ n, i.e., we require that the entries in the upper
left corner are strictly ordered, whereas the remaining entries may also be equal.
It holds that A > B implies A ·C > B ·C and C ·A > C ·B for a matrix5 C > 0
of appropriate dimension.

As is standard in termination analysis strings are assigned to elements in a
well-founded set and it has to be shown that each rule application leads to a
decrease within this order.

Here, every letter of the alphabet a ∈ Σ is associated with a square matrix
A = [a] > 0 (where all matrices have the same dimension n). Similarly every
word w = a1 . . . an is mapped to a matrix [w] = [a1] · · · · · [an], which is obtained
by taking the matrices of the single letters and multiplying them. If we can show
[ℓ] > [r] for every rule ℓ → r, then termination is implied by the considerations
above and by the fact that the order ≤ on N0 is well-founded, i.e., there are no
infinite strictly decreasing chains.

For the example above take the following matrices (as in [12]):

[a] =

(
1 1
1 0

)
[b] =

(
1 0
0 0

)
with [aa] =

(
2 1
1 1

)
>

(
1 1
1 1

)
= [aba]

For cycle rewriting a similar argument can be given, which is based on the
idea that the trace, i.e., the sum of the diagonal, of a matrix decreases [16].

5 Here 0 denotes the matrix with all entries zero.



A natural question to ask is how such matrices can be obtained. We will
later discuss how SMT solvers can be employed to automatically generate the
required weights.

In the following, we will generalize this method in two ways: we will replace
the natural numbers by an arbitrary semiring – an observation that has already
been made in the context of string rewriting – and we will make the step from
string to graph rewriting.

2.3 Ordered Semirings

We continue by defining semirings, the algebraic structures in which we will
evaluate the graphs occurring in transformation sequences, and orders on them.

A (partial) order is a reflexive, transitive and antisymmetric relation. If ≤
is an order, then we denote by < its strict subrelation e.g. x < y if and only
if x ≤ y ∧ x 6= y. An order is well-founded if it does not allow infinite, strictly
decreasing sequences x0 > x1 > x2 > · · · .

Definition 4. A semiring is a tuple 〈S,⊕,⊗, 0, 1〉, where S is the (finite or
infinite) carrier set, 〈S,⊕, 0〉 is a commutative monoid, 〈S,⊗, 1〉 is a monoid, ⊗
distributes over ⊕ and 0 is an annihilator for ⊗. That is, the following laws hold
for all x, y, z ∈ S:

(x⊕ y)⊕ z = x⊕ (y ⊕ z) 0⊕ x = x x⊗ 0 = 0

(x⊗ y)⊗ z = x⊗ (y ⊗ z) x⊕ 0 = x 0⊗ x = 0

(x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z) 1⊗ x = x x⊕ y = y ⊕ x

z ⊗ (x⊕ y) = (z ⊗ x)⊕ (z ⊗ y) x⊗ 1 = x

A semiring 〈S,⊕,⊗, 0, 1〉 is commutative if ⊗ is commutative (that is, if x⊗y =
y ⊗ x, for all x, y ∈ S).

We will often confuse a semiring with its carrier set, that is, S can refer to
both the semiring 〈S,⊕,⊗, 0, 1〉 and the carrier set S.

From now onwards we consider only commutative semirings.
In order to come up with termination arguments, we need a partial order on

the semirings that has to be compatible with its operations.

Definition 5. A semiring 〈S,⊕,⊗, 0, 1,≤〉 is an ordered semiring if 〈S,⊕,⊗, 0, 1〉
is a semiring and ≤ ∈ S×S is a partial order on S such that for all x, y, u, z ∈ S:

– x ≤ y implies x⊕ u ≤ y ⊕ u and x⊗ z ≤ y ⊗ z for z ≥ 0.

The ordered semiring S is strongly ordered, if

– x < y, z < u implies x⊕ z < y ⊕ u.

The ordered semiring S is strictly ordered, if in addition

– x < y implies x⊕ z < y ⊕ z for all z ∈ S.



We furthermore define those elements that preserve (strict) inequality under
multiplication:

S≤ = {z ∈ S | ∀x, y ∈ S : (x ≤ y =⇒ x⊗ z ≤ y ⊗ z)}

S< = {z ∈ S | ∀x, y ∈ S : (x < y =⇒ x⊗ z < y ⊗ z)}

In an ordered semiring S≤ contains at least all elements that are larger or
equal than 0. Furthermore it is easy to see that 1 ∈ S< ⊆ S≤ and S≤, S< are
both closed under multiplication.

Example 1. Examples of semirings which play a role in termination proving are:

– The natural numbers form a semiring 〈N0,+, ·, 0, 1,≤〉, where ≤ is the stan-
dard ordering of the natural numbers. We will call this semiring the arith-
metic semiring (on the natural numbers). This is a strictly ordered semiring
because both + and · are monotone for ≤ and + is monotone for <.
Furthermore S≤ = N0, S< = N0\{0}.

– The tropical semiring (on the natural numbers) is:

TN0
= 〈N0 ∪ {∞},min,+,∞, 0,≤〉,

where ≤ is the usual ordering of the natural numbers. The tropical semiring
is not strictly ordered, because, for example, 2 < 3 but min(1, 2) 6< min(1, 3).
It is however still strongly ordered.
Furthermore S≤ = N0∪{∞}, S< = N0. Note that the unit of addition (zero)
is ∞ and hence S< contains strictly more elements than the elements larger
or equal than zero.

– The arctic semiring (on the natural numbers) is

TN0
= 〈N0 ∪ {−∞},max,+,−∞, 0,≤〉,

where ≤ is the normal ordering of the natural numbers. Like the tropical
semiring, the arctic semiring is not strictly ordered, but strongly ordered.
Furthermore S≤ = N0 ∪ {−∞}, S< = N0.

All semirings above are commutative. We will in the following restrict ourselves
to commutative semirings, since we are assigning weights to graphs by multiply-
ing weights of nodes and edges, and nodes and edges are typically unordered.

3 Weighted Type Graphs

Similarly to mapping a word to a matrix, we will associate weights to graphs,
by typing them over a type graph with weights from a semiring.

Definition 6. Let an ordered semiring S be given. A weighted type graph T

over S is a graph with a weight function wT : ET → S and a designated flower
node ✲T ∈ V , such that for each label A ∈ Λ there exists a designated edge eA
with srcT (eA) = ✲T , tgtT (eA) = ✲T , labT (eA) = A and wT (eA) ∈ S<.



For a graph G, we denote with flT (G) (or just fl(G) if T is clear from the
context) the unique morphism from G to T that maps each node v ∈ VG of G to
the flower node ✲T and each edge e ∈ EG, with labT (e) = A, to eA. Note that,
for a morphism c : G→ H, it is always the case that flT (H) ◦ c = flT (G).

Note that every matrix A of dimension n can be associated with an (unla-
belled) type graph with n nodes, where an edge from node i to j is assigned
weight Ai,j (or does not exist if Ai,j = 0). Hence our idea of weighted type
graphs is strongly related with the matrices of Section 2.2.

The node ✲T is called the flower node, since the loops attached to it look
like a flower. Those loops correspond to the matrix entries at position (1, 1) and
similar to those entries they play a specific role. Note that the flower structure
also ensures that every graph can be typed over T (compare with the terminal
object in the category of graphs, which is exactly such a flower).

With a bit of notation overloading, we assign a weight to each morphism
t : D → T with codomain T and arbitrary domain D as follows:

wT (t) =
∏

e∈ED

wT (t(e)).

That is, we multiply the weights of all edges in the image of t with respect to ⊗.
Finally, the weight of a graph G with respect to T is defined by summing up

the weights of all morphisms from G to T with respect to ⊕:

wT (G) =
∑

tG : G→T

wT (tG).

The subscript T of wT will be omitted if clear from the context.

Example 2. We give a small example for the weight of a graph, for which we use
the arithmetic semiring.

T =

a1

b1

a1

a1

Consider for instance the type graph T . Edges are
labelled a, b and the weights, in this case natural num-
bers, are given as superscripts. Consider also the left-
hand side L of rule ρ below, consisting of two a-edges
(the graph rewriting analogue of the string rewriting
rule aa → aba considered in Section 2.2). There are
five morphisms L → T , each having weight 1, as they are calculated by multi-
plying the weights of two a-edges which also have weight 1. Hence the weight of
L with respect to T is wT (L) = 1 + 1 + 1 + 1 + 1 = 5. More details on this are
given in Example 3.

ρ =
1 2

a a

1 2 1 2

a b a

If we glue two graphs G1, G2 in order to obtain G, the weight of G can be
obtained from the weights of G1, G2.



Lemma 2 (Properties of weighted type graphs). Let S be an ordered com-
mutative semiring and T a weighted type graph over S.

(i) Whenever S is strongly ordered, for all
graphs G, flT (G) : G → T exists and
wT (flT (G)) ∈ S<.

(ii) Given the following diagram, where the
square is a pushout and G0 is discrete, it
holds that wT (t) = wT (t ◦ϕ1)⊗wT (t ◦ϕ2).

G0

G1

G2

G T

ψ1

ψ2

ϕ1

ϕ2

t(po)

Since property (ii) above only holds if G0 is discrete we restrict to discrete
graphs I in the rule interface.6

While the process of obtaining the weight of a graph corresponds to calcu-
lating the matrix of a word and summing up all its entries, we also require a
way to be more discriminating, i.e., to access separate matrix entries. Evaluating
a string-like graph would mean to fix its entry and exit node within the type
graph (similarly to fixing two matrix indices). However, in graph rewriting, we
have interfaces of arbitrary size. Hence, we do not index over pairs of nodes,
but over arbitrary interface graphs, and compute the weight of a graph L with
respect to a typed interface I.

Definition 7. Let ϕ : I → L and t : I → T be graph morphisms, where T is a
weighted type graph. We define:

wt(ϕ) =
∑

tL : L→T
tL◦ϕ=t

wT (tL).
L I

T

ϕ

t
tL

Finally, we can define what it means that a rule is decreasing, analogous to
the condition [ℓ] > [r] introduced in Section 2.2. In addition we also introduce
non-increasingness, a concept that will be needed in the following for so-called
relative termination arguments.

Definition 8. Let a rule ρ = L�ϕL−I−ϕR�R, an ordered commutative semiring
S and a weighted type graph T over S be given.

(i) The rule ρ is non-increasing if for all tI : I → T it holds that wtI (ϕL) ≥
wtI (ϕR).

(ii) The rule ρ is decreasing if it is non-increasing, and wfl(I)(ϕL) > wfl(I)(ϕR).

Example 3. We come back to Example 2 and check whether rule ρ is decreasing.
For this we have to consider the following four morphisms t : I → T from the
two-node interface into the weighted type graph T :

– The flower morphism fl(I) which maps both interface nodes to the left node
of T . In this case we have wfl(I)(ϕL) = 2 > 1 = wfl(I)(ϕR).

6 Compare also with the “stable under pushouts” property of [5].



– Furthermore there are three other morphisms t1, t2, t3 : I → T mapping the
two interface nodes either both to the right node of T , or the first interface
node to the left and the second interface node to the right node of T , or vice
versa. In all these cases we have wti(ϕL) = 1 = wti(ϕR).

Hence, the rule is decreasing. Note also that these weights correspond exactly to
the weights of the multiplied matrices in Section 2.2.

Finally, we have to show that applying a decreasing rule also decreases the
overall weight of a graph. For a non-increasing rule the weight might also remain
the same.

Lemma 3. Let S be a strictly ordered commutative semiring and T a weighted
type graph over S, where all weights are contained in S≤. Furthermore, let ρ be
a rule such that G⇒ρ H.

(i) If ρ is non-increasing, then wT (G) ≥ wT (H).
(ii) If ρ is decreasing, then wT (G) > wT (H).

From this lemma we can prove our main theorem that is based on the well-
known concept of relative termination [11,19]: if we can find a type graph for
which some rules are decreasing and the rest is non-increasing, we can remove the
decreasing rules without affecting termination. We are then left with a smaller
set of rules for which termination can either be shown with a different type graph
or with some other technique entirely.

Theorem 1. Let S be a strictly ordered commutative semiring with a well-
founded order ≤ and T a weighted type graph over S, where all weights are
contained in S≤. Let R be a set of graph transformation rules, partitioned in two
sets R< and R=. Assume that all rules of R< are decreasing and all rules of R=

are non-increasing. Then R is terminating if and only if R= is terminating.

A special case of the theorem is when R= = ∅. Then the statement of the
theorem is that a graph transformation system R is terminating if all its rules
are decreasing with respect to a strictly ordered commutative semiring S and
type graph T over S.

4 Using Strongly Ordered Semirings

In the last section the semirings were required to be strictly ordered. In this
section we consider what happens when we weaken this requirement and also
allow non-strictly ordered semirings, which must however be strongly ordered.
This allows us to work with the tropical and arctic semiring. It turns out that
we obtain similar results to above if we strengthen the notion of decreasing.

Definition 9. Let a rule ρ = L�ϕL−I−ϕR�R, an ordered commutative semiring
S and a weighted type graph T over S be given. The rule ρ is strongly decreasing
(with respect to T ) if for all tI : I → T it holds that wtI (ϕL) > wtI (ϕR).



Using this new notion of decreasingness we can also formulate a termina-
tion argument, which is basically equivalent to the termination argument we
presented in [5].

Lemma 4. Let S be a strongly ordered commutative semiring and T a weighted
type graph over S, where all weights are contained in S<. Furthermore, let ρ be
a rule such that G⇒ρ H.

(i) If ρ is non-increasing, then wT (G) ≥ wT (H).

(ii) If ρ is strongly decreasing, then wT (G) > wT (H).

Now it is easy to prove a theorem analogous to Theorem 1, using Lemma 4
instead of Lemma 3.

Theorem 2. Let S be a strongly ordered commutative semiring with a well-
founded order ≤ and T a weighted type graph over S, where all weights are
contained in S<. Let R be a set of graph transformation rules, partitioned in
two sets R< and R=. Assume that all rules of R< are strongly decreasing and
all rules of R= are non-increasing. Then R is terminating if and only if R= is
terminating.

We have partially recovered the termination analysis from one of our earlier
papers [5]. In order to explain the connection, let us consider what it means for
a rule ρ = L�ϕL− I −ϕR�R to be non-increasing in the tropical semiring where
⊕ is min and ⊗ is +: for each t : I → T into a weighted type graph T it must
hold that

min
tL : L→T
tL◦ϕL=t

wT (tL) ≥ min
tR : R→T
tR◦ϕR=t

wT (tR)

where wT (tL) is the weight of the morphism tL, obtained by summing up (via
+) the weights of all edges in the image of tL.

If the sets are non-empty, a different way of expressing that the minimum
of the first set is larger or equal than the minimum of the second set, is to say
that for each morphism tL : L → T with tL ◦ ϕL = t there exists a morphism
tR : R → T with tR ◦ϕR = t and wT (tL) ≥ wT (tR). This results in the notion of
tropically non-increasing of [5].

A proper generalization, taking also empty sets into account, is made in [10].

Comparing the results of Theorems 1 and 2 we notice the following: as under-
lying semiring S we can take either a strictly ordered or a strongly ordered one,
but if we choose a strongly ordered semiring, the termination argument might
become more difficult, since for every morphism from the left-hand side to the
type graph there must exist a compatible, strictly smaller morphism from the
right-hand side to the type graph. In addition, we have to be more restrictive
with the weights allowed in the type graph.



5 Examples

We give examples to show that with a weighted type graph over a strictly ordered
semiring (such as the arithmetic semiring), we can prove termination on some
graph transformation systems where strongly ordered semirings fail. We start
with a graph transformation system for which a termination argument can be
found using both variants. Then we will modify some rules and explain why
weighted type graphs over strongly ordered semirings can not find a termination
argument for the modified system.

Example 4. As an example we take a system consisting of several counters, which
represent their current value by a finite number of bits. Each counter may possess
an incr marker, that can be consumed to increment the counter by 1.

G = . . .

. . .

1 0

0 0 1 1

1 0 1

incr

incr

count

count

count

One possible graph describing
a state of such a system is given
by G. This is just one possible ini-
tial graph, since we really show
uniform termination, i.e., termi-
nation on all initial graphs, even
those that do not conform to the
schema indicated by G.

We consider the graph transformation system {ρ1, ρ2, ρ3, ρ4}, adapted from
[16], consisting of the following four rules:

ρ1 =
1 2

0 count

incr

1 2 1 2

1 count

ρ2 =
1 2

1 count

incr

1 2 1 2

c count

ρ3 =
1 2

0 c

1 2 1 2

1 0

ρ4 =
1 2

1 c

1 2 1 2

c 0

Each counter may increment at most once. Rules ρ1 and ρ2 specify that a
counter (represented by a count -labelled edge) may increment its least significant
bit by 1 if an incr marker was not consumed yet. If the least significant bit is 1,
the bit is marked by a label c, to remember that a carry bit has to be passed to
the following bit. Rule ρ3 increments the next bit of the counter by 1 (if it was
0 before), while rule ρ4 shifts the carry bit marker over the next 1.

Ttrop = count0

incr2

00

c2

11

The fact that this graph transformation system
is uniformly terminating can be shown using a
weighted type graph over either a strictly or
strongly ordered semiring. For example, using a



non-relative termination argument, we evaluate the
rules with respect to the weighted type graph Ttrop
over the tropical semiring.

A relative termination argument is even easier: the rules ρ1 and ρ2 can be re-
moved due to the decreasing number of incr -labelled edges. Then we can remove
ρ3 due to the decreasing number of c-labelled edges (which remain constant in
ρ4) and afterwards remove ρ4 since it decreases 1-labelled edges. With all rules
removed, the graph transformation system has been shown to terminate uni-
formly.

Tarit = count1

incr3

01

c3

12

We now consider the arithmetic semiring and again
use a non-relative termination argument: we evaluate
the rules with respect to the weighted type graph
Tarit , where all weights are just increased by one with
respect to Ttrop . That is due to the fact, that we are working in the arithmetic
semiring and hence have to make sure that all weights of flower edges are strictly
larger than 0.

Example 5. We will now modify rules ρ1 and ρ2 in order to give an example
where weighted type graphs over tropical and arctic semirings fail to find a
termination argument.

Consider the graph transformation system {ρ′1, ρ
′
2, ρ

′
3, ρ

′
4} consisting of rules

ρ3 and ρ4 from Example 4 with two additional new rules:

ρ′1 =
1 2

0 count

1 2 1 2

1 count

ρ′2 =
1 2

1 count

1 2 1 2

c count

ρ′3 =
1 2

0 c

1 2 1 2

1 0 (= ρ3)

ρ′4 =
1 2

1 c

1 2 1 2

c 0 (= ρ4)

With respect to Example 4, the counter may increment its value not only once
but several times, until the least significant bit is permanently marked by the
carrier bit label c. This will eventually happen, since counters are never extended
by additional digits and carry bits finally accumulate and can not be processed.

We now give a relative termination argument, to show uniform termination of
this graph transformation system. The termination of this system is not obvious
as the numbers of the labels c, 0 and 1 increase and decrease depending on the
rules used for the derivation.

T ′ =

count1

01

c1

11

11

02

count1

02

c2

12

First, we evaluate the rules with respect
to the following weighted type graph T ′

over the arithmetic semiring. Consider for
instance rule ρ′1 and the following four in-
terface morphisms:



– t0 = fl(I) : I → T ′ is the flower morphisms and maps both interface node to
the left node of T ′. In this situation we have wt0(ϕL) = 1 · 1 + 1 · 2 = 3 >
2 = 1 · 1 + 1 · 1 = wt0 (ϕR) (there are two ways to map the left-hand side in
such a way that both interface nodes are mapped to the left node, resulting
in weight 3; similar for the right-hand side, where we obtain weight 2).

– t1 : I → T ′ is the morphism that maps the first interface node to the right
node of T ′ and the second interface node to the left node of T ′. In this case
we have wt1(ϕL) = 1 · 2 = 2 ≥ 2 = 1 · 2 = wt1(ϕR).

– t2 : I → T ′ is the morphism that maps the first interface node to the left
node of T ′ and the second interface node to the right node of T ′. In this case
we have wt2(ϕL) = 0 ≥ 0 = wt2(ϕR), since there are no possibilities to map
either the left-hand or the right-hand side.

– t3 : I → T ′ is the morphisms that maps both interface node to the right node
of T ′. Here we have wt3 (ϕL) = 0 ≥ 0 = wt3(ϕR) (again, there are no fitting
matches of the left-hand and right-hand side).

Hence ρ′1 is decreasing. Similarly we can prove that ρ′2 is decreasing and ρ
′
3, ρ

′
4 are

non-increasing, which means that ρ′1, ρ
′
2 can be removed. To show termination

of the remaining rules ρ′3, ρ
′
4 we can simply use the weighted type graph Tarit

from Example 4 again.

We found a relative termination argument for Example 5 using a weighted
type graph over the arithmetic semiring. However, there is no way to obtain a
termination argument with a weighted type graph over either tropical or arctic
semirings: in these cases the weight of any graph is linear in the size of the graph
(since we use only addition and minimum/maximum to determine the weight of
a graph). If we have an interpretation where at least one rule is decreasing,
and the other rules are non-increasing, then in any derivation, the number of
applications of the decreasing rules is at most linear in the size of the initial
graph. However, if we start with a counter which consists of n bits (all set to 0),
we obtain a derivation in which all of the rules are applied at least 2n times.

This means that it is principally impossible to find a proof with weighted
type graphs over the tropical or arctic semiring, even using relative termination.

The last two examples were inspired by string rewriting and the example rules
could easily be encoded into a string grammar. We give another final example
and prove termination using a weighted type graph over the arithmetic semiring.
We now switch from strings to trees, staying with a scenario where reductions of
exponential length are possible. In addition we discard the count-label as each
counter will be represented by a node with no incoming edge and we will exploit
the dangling edge condition.

Example 6. In the next example we interweave our counters into a single treelike
structure. Each path from a root node to a leaf can be interpreted as a counter.

Ĝ =

. . .

. . . 0

0

0
0

1

1

1

1

0

One possible graph describing a state
of the modified system is given by Ĝ. Each
counter shares a number of bits with other



counters, where the least significant bit is
shared by all counters. Again this is just
one possible initial graph, since we prove
uniform termination.
Let the following graph transformation system {ρ̂1, ρ̂2, ρ̂3, ρ̂4, ρ̂5, ρ̂6} be given:

ρ̂1 =
1

0

1 1

1 ρ̂2 =
1

1

1 1

c

ρ̂3 = 1

2

3

0

0

c 1

2

3

1

2

3

1

0

0 ρ̂4 = 1

2

3

0

1

c 1

2

3

1

2

3

1

1

0

ρ̂5 = 1

2

3

1

0

c 1

2

3

1

2

3

c

0

0 ρ̂6 = 1

2

3

1

1

c 1

2

3

1

2

3

c

1

0

The rules ρ̂1 and ρ̂2 increment the shared least significant bit by 1. These
two rules can only be applied at the root of the tree (due to the dangling edge
condition of the DPO approach), as long as the edge is either labelled 0 or 1. By
applying the rules ρ̂3, . . . , ρ̂6, a carrier bit can be passed to the next bit. Proving
termination of this graph transformation system is non-trivial. By applying for
instance ρ̂6, the value of the counters containing interface node 1 does not change,
while other counter values decrease.

T̂ =

11

01

c1

11

02

12

02

c2

We evaluate the rules with respect to the
following weighted type graph T̂ over the
arithmetic semiring. We can prove that ρ̂1
and ρ̂2 are decreasing and ρ̂3, . . . , ρ̂6 are
non-increasing, which means that ρ̂1, ρ̂2
can be removed using a relative termination argument.

The rules ρ̂3 and ρ̂4 can be removed due to the decreasing number of c-labelled
edges, which remain constant in ρ̂5 and ρ̂6. Afterwards we can remove ρ̂5, ρ̂6 since
they decrease the number of 1-labelled edges. The graph transformation system
has been shown to terminate uniformly, since there are no rules left.

6 Finding Weighted Type Graphs and Implementation

The question of how to find suitable weighted type graphs has been left open so
far. Instead of manually searching for a suitable type graph we employ a satisfi-
able modulo theories (SMT) solver (in this case Z3) that can solve inequations
over the natural numbers.

We fix a number n of nodes in the type graph and proceed as follows: take
a complete graph T with n nodes, i.e., a graph with an edge for every pair
i, j ∈ {1, . . . , n} of nodes and every edge label a ∈ Λ. Every edge e in this graph
is associated with a variable xe. The task is to assign weights to those variables
such that rules can be shown as either decreasing or non-increasing.



Now, for every rule ρ = L�ϕL− I −ϕR�R and every map t : I → T we obtain
an inequation: ∑

tL : L→T
tL◦ϕL=t

∏

e∈EL

xtL(e) ≥
∑

tR : R→T
tR◦ϕR=t

∏

e∈ER

xtR(e)

If we want to show that ρ is decreasing and t is the flower morphism ≥ has to
be replaced by >.

Doing this for each rule and every map t gives us equations that can be used as
input for an SMT-solver.We consider the weights as natural numbers only up to a
given bound by restricting the length of the corresponding bit-vectors. Note that
we would be outside the decidable fragment of arithmetics otherwise since the
equations would contain multiplication of variables (as opposed to multiplication
of constants and variables). By using a bit-vector encoding the SMT-solver Z3
can reliably find a solution (if it exists) and especially such solutions are found
for the examples discussed in Section 5. Any solution gives us a valid weighted
type graph.

A prototype Java-based tool, called Grez, has been written and was intro-
duced in [5]. Given a graph transformation system R, the tool tries to automat-
ically find a proof for the uniform termination of R. The tool supports relative
termination and runs different algorithms (which are chosen by the user) con-
currently to search a proof. If one algorithm succeeds in finding a termination
argument for at least one of the rules, all processes are interrupted and the cor-
responding rule(s) will be removed from R. The algorithms are then executed
on the smaller set of rules and this procedure is repeated until all rules have
been removed. Afterwards Grez generates the full proof which can be saved as
a PDF-file.

Grez provides both a command-line interface and a graphical user interface.
The tool supports the integration of external tools, such as other termination
tools or SMT-solvers. Grez can use any SMT-solver which supports the SMT-
LIB2 format [1]. Grez generates the inequation described above in this format
and passes it, either through a temporary file or via direct output stream, to the
SMT-solver. The results are parsed back into the termination proof, as soon as
the SMT-solver terminates and produces a model for the formula.

We ran the tool on all examples of this paper using a Windows workstation
with a 2, 67 Ghz, 4-core CPU and 8 GB RAM. All proofs were generated in less
than 1 second. The tool, a user manual [4] and the examples from this paper
can be downloaded from the Grez webpage.7

7 Conclusion

We have shown how to extend the tropical and arctic weighted type graphs of
[5] to weighted type graphs over general semirings and their application to the
termination analysis of graph transformation systems. This enables us to work

7 www.ti.inf.uni-due.de/research/tools/grez

www.ti.inf.uni-due.de/research/tools/grez


in the arithmetic semiring and to prove termination of systems that could not
be handled with previous approaches. Note that arithmetic type graphs do not
subsume previous termination analysis methods, but rather complement them.
In practice one should always try several methods in parallel threads, as it is
done in our termination tool Grez.

Related Work. As already mentioned in the introduction, there is some work
on termination analysis for graph transformation systems, often using rather
straightforward counting arguments. Some work is specifically geared to the
analysis of model transformations, taking for instance layers into account.

The paper [3] considers high-level replacement units (hlru), which are trans-
formation systems with external control expressions. The paper introduces a
general framework for proving termination of such hlrus, but the only concrete
termination criteria considered are node and edge counting, which are subsumed
by the weighted type graph method (for more details see [5]).

In [8] layered graph transformation systems are considered, which are graph
transformation systems where interleaving creation and deletion of edges with
the same label is prohibited and creation of nodes is bounded. The paper shows
such graph transformation systems are terminating.

Another interesting approach encodes graph transformation systems into
Petri nets [17] by introducing one place for every edge label and transform-
ing rules into transitions. Whenever the Petri net terminates on all markings,
we can conclude uniform termination of the original graph transformation rules.
Note that the second example of Section 5 can not be handled in this way by
Petri nets.8 On the other hand [17] can handle negative application conditions
in a limited way, a feature we did not consider here.

Another termination technique via forward closures is presented in [14]. Note
that the example discussed in this paper (termination of a graph transformation
system based on the string rewriting rules ab→ ac, cd→ db) can be handled by
our tool via tropical type graphs.

Future Work. Naturally, integration of (negative) application condition is an
interesting direction for future work. Furthermore we have already started to
work on techniques for pattern counting. Here we are interested in deciding,
whether a given rule ρ always decreases the number of occurrences of a given
subgraph P .

Another area of future research that might be of great interest is non-uniform
termination analysis, i.e., to analyse whether the rules terminate only on a re-
stricted set of graphs. In applications it is often the case that rules do not always
terminate, but they terminate on all input graphs of interest (lists, cycles, trees,
etc.). For this, it will be necessary to find a suitable way to characterize graph
languages that is useful for the application areas and integrates well with termi-
nation analysis.

8 Starting with three edges labelled 0, 1, count , rule ρ
′

2 transforms them into three
labels 0, c, count , which, via rule ρ

′

3, are again transformed into 0, 1, count .
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A Proofs

Lemma 1. Let a pushout PO consisting of objects G0, G1, G2, G be given. Then
there exists a bijection between pairs of commuting morphisms t1 : G1 → T ,
t2 : G2 → T and morphisms t : G→ T (see diagram below).

G0

G1

G2

G T

ψ1

ψ2

ϕ1

ϕ2

t

t1

t2

(po)

For each t we obtain a unique pair of morphisms t1, t2 by composing with ϕ1 and
ϕ2, respectively. Conversely, for each pair t1, t2 of morphisms with t1◦ψ1 = t2◦ψ2

we obtain a unique t : G→ T as mediating morphism. In this case we will write
medPO (t1, t2) = t and med−1

PO (t) = 〈t1, t2〉.

Proof. It is straightforward to verify that medPO and med−1
PO are indeed inverse

to each other and hence both are bijections. ⊓⊔

Lemma 2 (Properties of weighted type graphs). Let S be an ordered
commutative semiring and T a weighted type graph over S.

(i) Whenever S is strongly ordered, for all
graphs G, flT (G) : G → T exists and
wT (flT (G)) ∈ S<.

(ii) Given the following diagram, where the
square is a pushout and G0 is discrete, it
holds that wT (t) = wT (t ◦ϕ1)⊗wT (t ◦ϕ2).

G0

G1

G2

G T

ψ1

ψ2

ϕ1

ϕ2

t(po)

Proof.

(i) flT (G) exists by construction. Furthermore, since wT (e) ∈ S< for all edges
in the range of flT (G), it holds that flT (G) ∈ S<, using the fact that 1 ∈ S<
(needed when EG = ∅) and S< is closed under multiplication.

(ii) Since G0 is discrete and the square is a pushout, the edge set EG is (iso-
morphic to) the disjoint union of EG1

and EG2
. Thus:

wT (t) =
∏

e∈EG

wT (t(e)) =
∏

e∈EG1

wT ((t ◦ ϕ1)(e))⊗
∏

e∈EG2

wT ((t ◦ ϕ2)(e))

= wT (t ◦ ϕ1)⊗ wT (t ◦ ϕ2),

as required. ⊓⊔

Lemma 3. Let S be a strictly ordered commutative semiring and T a weighted
type graph over S, where all weights are contained in S≤. Furthermore, let ρ be
a rule such that G⇒ρ H.



(i) If ρ is non-increasing, then wT (G) ≥ wT (H).
(ii) If ρ is decreasing, then wT (G) > wT (H).

Proof. Let ρ = L�ϕL− I −ϕR�R. The rewriting step G⇒ρ H is depicted below
on the left.

For every possibility to type G via tG : G → T , there exists a morphism
tC = tG ◦ ψL : C → T and we obtain tH : H → T as mediating morphism of the
right-hand pushout PO2 (see diagram on the right).

L I R

G C H

ϕL ϕR

m c n

ψL ψR

PO1 PO2

L I R

G C H

T

ϕL ϕR

m c n

ψL ψR

tG

tC
tL tR

tH

Now we have (compare with the diagram above on the right):

wT (G) =
∑

tG : G→T

w(tG) (1)

=
∑

tC : C→T

∑

tL : L→T
tL◦ϕL=tC◦c

w(medPO1
(tC , tL)) (2)

=
∑

tC : C→T

∑

tL : L→T
tL◦ϕL=tC◦c

(
w(tL)⊗ w(tC)

)
(3)

=
∑

tC : C→T

(
w(tC)⊗

∑

tL : L→T
tL◦ϕL=tC◦c

w(tL)
)

(4)

=
∑

tC : C→T

(
w(tC)⊗ wtC◦c(ϕL)

)
(5)

where (2) follows from the fact that med is a bijection (see Lemma 1), (3) is an
application of the equation w(t) = w(t ◦ϕ1)⊗w(t ◦ϕ2) of Lemma 2, (4) follows
from distributivity and (5) holds by definition. Symmetrically, we have

wT (H) =
∑

tC : C→T

(
w(tC)⊗ wtC◦c(ϕR)

)
.

Using this, we can prove the two parts of the lemma.

(i) Since ρ is non-increasing, it holds by definition that wtC◦c(ϕL) ≥ wtC◦c(ϕR)
for all tC : C → T . Using the fact that all weights in the type graph are
contained in S≤ and wT (tC) is obtained by multiplying such weights, we
can infer that:

w(tC)⊗ wtC◦c(ϕL) ≥ w(tC)⊗ wtC◦c(ϕR).

From that it follows that wT (G) ≥ wT (H).



(ii) Since ρ is decreasing, it additionally holds by assumption that wfl(I)(ϕL) >
wfl(I)(ϕR). Since w(fl(C)) ∈ S< (cf. Definition 6 and closure of S< under
multiplication), by Lemma 2, we have that

w(fl (C))⊗ wfl(I)(ϕL) > w(fl (C))⊗ wfl(I)(ϕR).

The latter gives us the summands on both sides for the case of tC = fl(C)
and tC ◦ c = fl(I). Together with the inequalities from (i) it follows that
wT (G) > wT (H) (using the fact that S is a strictly ordered semiring). ⊓⊔

Theorem 1. Let S be a strictly ordered commutative semiring with a well-
founded order ≤ and T a weighted type graph over S, where all weights are
contained in S≤. Let R be a set of graph transformation rules, partitioned in two
sets R< and R=. Assume that all rules of R< are decreasing and all rules of R=

are non-increasing. Then R is terminating if and only if R= is terminating.

Proof. (⇒): It is an immediate consequence of R being terminating that its
subset R= is also terminating.

(⇐): For a rule ρ and transitionG⇒r H , it holds, by Lemma 3, that wT (G) >
wT (H) if ρ ∈ R< and wT (G) ≥ wT (H) if ρ ∈ R=. From this it follows that each
infinite transition sequence of R ends in an infinite transition sequence of R=,
which do not exist by assumption. ⊓⊔

Lemma 4. Let S be a strongly ordered commutative semiring and T a weighted
type graph over S, where all weights are contained in S<. Furthermore, let ρ be
a rule such that G⇒ρ H.

(i) If ρ is non-increasing, then wT (G) ≥ wT (H).
(ii) If ρ is strongly decreasing, then wT (G) > wT (H).

Proof. The proof proceeds analogously to the proof of Lemma 3. For non-increasing
rules the proof is exactly the same.

For strongly decreasing rules we have to show

∑

tC : C→T

(
w(tC)⊗ wtC◦c(ϕL)

)
>

∑

tC : C→T

(
w(tC)⊗ wtC◦c(ϕR)

)

This holds since wtC◦c(ϕL) > wtC◦c(ϕR) for all tC , and w(tc) ∈ S< (due to
the fact that all weights in the type graph are in S< and S< is closed under
multiplication). Hence the properties of strongly ordered semirings allow us to
conclude. ⊓⊔
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