
A Sound Execution Semantics for ATL
via Translation Validation

Research Paper

Zheng Cheng(B), Rosemary Monahan, and James F. Power

Computer Science Department, Maynooth University,
Maynooth, Co. Kildare, Ireland

{zcheng,rosemary,jpower}@cs.nuim.ie

Abstract. In this work we present a translation validation approach
to encode a sound execution semantics for the ATL specification. Based
on our sound encoding, the goal is to soundly verify an ATL specifica-
tion against the specified OCL contracts. To demonstrate our approach,
we have developed the VeriATL verification system using the Boogie2
intermediate verification language, which in turn provides access to the
Z3 theorem prover. Our system automatically encodes the execution
semantics of each ATL specification (as it appears in the ATL matched
rules) into the intermediate verification language. Then, to ensure the
soundness of the encoding, we verify that it soundly represents the run-
time behaviour of its corresponding compiled implementation in terms
of bytecode instructions for the ATL virtual machine. The experiments
demonstrate the feasibility of our approach. They also illustrate how to
automatically verify an ATL specification against specified OCL con-
tracts.

Keywords: Model transformation verification · ATL · Automatic
theorem proving · Intermediate verification language · Boogie

1 Introduction

Model-driven engineering (MDE) has been recognised as an effective way to
manage the complexity of software development. Model transformation is widely
acknowledged as a principal ingredient of MDE. Two main paradigms for devel-
oping model transformations are the operational and relational approaches.
Operational model transformations are imperative in style, and focus on impera-
tively describing how a model transformation should progress. Relational model
transformations (MTr) have a “mapping” style, and aim at producing a declara-
tive specification that documents what the model transformation intends to do.
Typically, a declarative specification is compiled into a low level transformation

Z. Cheng—Funded by the Doctoral Teaching scholarship, John & Pat Hume schol-
arship and Postgraduate Travel fund from Maynooth University.

c© Springer International Publishing Switzerland 2015
D. Kolovos and M. Wimmer (Eds.): ICMT 2015, LNCS 9152, pp. 133–148, 2015.
DOI: 10.1007/978-3-319-21155-8 11

134 Z. Cheng et al.

implementation and is executed by the underlying virtual machine. Because of
its mapping-style nature, a MTr is generally easier to write and understand than
an operational transformation.

The Atlas Transformation Language (ATL) is one of the most widely used
MTr languages in industry and academia [9]. An ATL specification (i.e. an ATL
program) is a declarative specification that documents what the ATL transfor-
mation intends to do. It is expressed in terms of a list of rules (Sect. 2). These
rules describe the mappings between the source metamodel and the target meta-
model, using the Object Constraint Language (OCL) for both its data types and
its declarative expressions. Then, the ATL specification is compiled into an ATL
Stack Machine (ASM) implementation to be executed.

Verifying the correctness of the ATL transformation means proving assump-
tions about the ATL specification. These assumptions can be made explicitly by
transformation developers via annotations, so-called contracts. The contracts are
usually expressed in OCL for its declarative and logical nature. Many approaches
have been adopted to verify the correctness of an ATL transformation [5,6,8,15].
These approaches usually consist of encoding the execution semantics of an ATL
specification in a formal language. Combined with a formal treatment of trans-
formation contracts, a theorem prover can be used to verify the ATL specifica-
tion against the specified contracts. The result of the verification will imply the
correctness of the ATL transformation.

However, existing approaches do not verify that the encoded execution
semantics of an ATL specification soundly represents the runtime behaviour pro-
vided by the ASM implementation. Therefore, an unsound encoding will yield
unsound results after verification, i.e. it will lead to erroneous conclusions about
the correctness of the ATL transformation (Sect. 2). In a model transforma-
tion verification survey by Rahim and Whittle, this problem is characterised as
ensuring the semantics preservation relationship between a declarative specifi-
cation and its operational implementation, which is an under-researched area in
MDE [1].

In this work, we are specifically interested in the core component of ATL, i.e.
ATL matched rules. We aim for the sound verification of the total correctness of
an ATL transformation. Therefore, we compositionally verify the termination,
and the soundness of our encoding of the execution semantics of each ATL
matched rule in the given ATL specification (i.e. we verify that the execution
semantics of each ATL matched rule soundly represents the runtime behaviour of
its corresponding ASM implementation). Consequently, we are able to soundly
verify the ATL specification against its specified OCL contracts, based on our
sound encodings for the execution semantics of the ATL matched rules.

We have developed our VeriATL verification system in the Boogie interme-
diate verification language (Boogie) to demonstrate our approach (Sect. 6) [4].

Boogie. Boogie is a procedure-oriented language that is based on Hoare-logic.
It provides imperative statements (such as assignment, if and while state-
ments) to implement procedures, and supports first-order-logic contracts (i.e.
pre/postconditions) to specify procedures. Boogie allows type, constant, function

A Sound Execution Semantics for ATL via Translation Validation 135

and axiom declarations, which are mainly used to encode libraries that define
data structures, background theories and language properties. A Boogie proce-
dure is verified if its implementation satisfies its contracts. The verification of
Boogie procedures is performed by the Boogie verifier, which uses the Z3 SMT
solver as its underlying theorem prover. Using Boogie in verifier design has two
advantages. First, Boogie encodings can be encapsulated as libraries, which are
then reusable when designing verifiers for other languages. Second, Boogie acts as
a bridge between the front-end model transformation language and the back-end
theorem prover. The benefit here is that we can focus on generating verification
tasks for the front-end language in a structural way, and then delegate the task
of interacting with theorem provers to the Boogie verifier.

Thus, using Boogie enables Hoare-logic-based automatic theorem proving
via an efficient theorem prover, i.e. Z31. The details for performing our proposed
verification tasks were far from obvious to us, and articulating them is the main
contribution of this work. In particular,

– We adapt a memory model used in the verification of object-oriented pro-
grams to explain concepts within MDE. This allows the encoding of both
these MDE concepts and the execution semantics of ATL matched rules in
Boogie (Sect. 4).

– We use the translation validation approach to compositionally verify the
soundness of our Boogie encoding for the execution semantics of an ATL
matched rule (Sect. 5). The benefit is that we can automatically verify the
soundness of each ATL specification/ASM implementation pair. Our transla-
tion validation approach is based on encoding a translational semantics of the
ASM language in Boogie, to allow us precisely explain the runtime behaviour
of ASM implementations (Sect. 5).

2 Motivating Example

We use the ER2REL transformation as our running example [5]. It transforms
the Entity-Relationship (ER) metamodel (Fig. 1(a)) into the RELational (REL)
metamodel (Fig. 1(b)). Both the ER schema and the relational schema have a
commonly accepted semantics. Thus, it is easy to understand their metamodels.

The ER2REL specification is defined via a list of ATL matched rules in a
mapping style (Fig. 2). The first three rules map respectively each ERSchema
element to a RELSchema element (S2S), each Entity element to a Relation
element (E2R), and each Relship element to a Relation element (R2R). The
remaining three rules generate a RELAttribute element for each Relation ele-
ment created in the REL model.

Each ATL matched rule has a from section where the source elements to
be matched in the source model are specified. An optional OCL constraint may
be added as the guard, and a rule is applicable only if the guard passes. Each
rule also has a to section which specifies the elements to be created in the target

1 Z3. http://z3.codeplex.com/.

http://z3.codeplex.com/

136 Z. Cheng et al.

Fig. 1. Entity-Relationship and Relational metamodels

1 module ER2REL; create OUT : REL from IN : ER;
2

3 rule S2S {
4 from s: ER!ERSchema
5 to t: REL!RELSchema (relations<-s.relships, relations<-s.entities)}
6

7 rule E2R {
8 from s: ER!Entity to t: REL!Relation (name<-s.name) }
9

10 rule R2R {
11 from s: ER!Relship to t: REL!Relation (name<-s.name) }
12

13 rule EA2A {
14 from att: ER!ERAttribute, ent: ER!Entity (att.entity=ent)
15 to t: REL!RELAttribute (name<-att.name, isKey<-att.isKey, relation<-ent) }
16

17 rule RA2A {
18 from att: ER!ERAttribute, rs: ER!Relship (att.relship=rs)
19 to t: REL!RELAttribute (name<-att.name, isKey<-att.isKey, relation<-rs) }
20

21 rule RA2AK {
22 from att: ER!ERAttribute, rse: ER!RelshipEnd
23 (att.entity=rse.entity and att.isKey=true)
24 to t: REL!RELAttribute (name<-att.name, isKey<-att.isKey, relation<-rse.relship)}

Fig. 2. ATL specification for ER2REL model transformation

model. The rule initialises the attribute/association of a generated target element
via the binding operator (<-). This binding operator resolves its right hand side
before assigning to the left hand side. For example, the binding relation<-ent in
the EA2A rule on line 15 of Fig. 2 assigns the Relation element that is created
for ent by the R2R rule to the relation.

3 Proving Transformation Correctness

In this work the correctness of an ATL transformation is specified using OCL
contracts. These OCL contracts form a Hoare-triple which is used to verify the

1 context ERSchema inv entities_unique: −− entity names are unique in the ER schema
2 self.entities->forAll(e1,e2 | e1<>e2 implies e1.name<>e2.name)
3 −−−
4 context RELSchema inv relations_unique: −− relation names are unique in the REL schema
5 self.relations->forall(r1,r2| r1<>r2 implies r1.name<>r2.name)

Fig. 3. OCL contracts for ER and REL

A Sound Execution Semantics for ATL via Translation Validation 137

correctness of each ATL transformation. For example, using the OCL contracts
specified in Fig. 3, we can verify whether the constraint entities unique imposed
on the ER metamodel, along with the ER2REL specification, guarantees that
the constraint relations unique holds on the REL metamodel.

In order to prove the correctness of the ATL transformation, we encode the
OCL transformation contracts, along with the ATL transformation specification
into the Boogie language. Figure 4 shows this encoding applied to the ER2REL
transformation:

– First, the OCL contracts are encoded as a Boogie contract. In particular, the
OCL constraints on the source metamodels are encoded as Boogie precon-
ditions (line 2–8), and the OCL constraints on the target metamodels are
encoded as Boogie postconditions (line 10–16).

1 procedure main () ;
2 / precondi t ion : en t i t y names are unique in the ER schema /
3 requires (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒
4 (∀ j1 , j 2 : int • 0≤j1<j2<arrayLength (read (srcHeap , s , ERSchema . e n t i t i e s)) =⇒
5 read (srcHeap , s , ERSchema . e n t i t i e s) [j 1] �=
6 read (srcHeap , s , ERSchema . e n t i t i e s) [j 2] =⇒
7 read (srcHeap , read (srcHeap , s , ERSchema . e n t i t i e s) [j 1] , Entity . name) �=
8 read (srcHeap , read (srcHeap , s , ERSchema . e n t i t i e s) [j 2] , Entity . name))) ;
9 modifies tarHeap ;

10 / pos tcondi t ion : r e l a t i on names are unique in the REL schema /
11 ensures (∀ t : ref • t∈ f i nd (tarHeap ,REL RELSchema) =⇒
12 (∀ j1 , j 2 : int • 0≤j1<j2<arrayLength (read (tarHeap , t , RELSchema . r e l a t i o n s)) =⇒
13 read (tarHeap , t , RELSchema . r e l a t i o n s) [j 1] �=
14 read (tarHeap , t , RELSchema . r e l a t i o n s) [j 2] =⇒
15 read (tarHeap , read (tarHeap , t , RELSchema . r e l a t i o n s) [j 1] , Re lat ion . name) �=
16 read (tarHeap , read (tarHeap , t , RELSchema . r e l a t i o n s) [j 2] , Re lat ion . name))) ;
17

18 implementation main () {
19 / I n i t i a l i z e Target model /
20 ca l l init tar model () ;
21 / in s t an t i a t i on phase /
22 ca l l S2S matchAll () ; ca l l E2R matchAll () ; ca l l R2R matchAll () ;
23 ca l l EA2A matchAll () ; ca l l RA2A matchAll () ; ca l l RA2AK matchAll () ;
24 / i n i t i a l i s a t i o n phase /
25 ca l l S2S applyAll () ; ca l l E2R applyAll () ; ca l l R2R applyAll () ;
26 ca l l EA2A applyAll () ; ca l l RA2A applyAll () ; ca l l RA2AK applyAll () ;
27 }

Fig. 4. Verifying the Correctness of the ER2REL Transformation

– Second, the execution semantics of the ATL specification is encoded as a Boo-
gie implementation (line 18–27). The body of this Boogie implementation is
a series of procedure calls to the encoded Boogie contracts for the execution
semantics of each ATL matched rule. Specifically, the execution semantics of
a given matched rule involves an instantiation step (for matching source ele-
ments and allocating target elements) and an initialisation step (for initial-
ising target elements) [3]. Each step is encoded as a Boogie contract. These
Boogie contracts for ATL rules are scheduled to execute their instantiation
steps before their initialisation steps, which ensures the confluence of trans-
formation [3].

– Finally, we pair the Boogie contract that represents the specified OCL contracts,
with the Boogie implementation that represents the execution semantics of the

138 Z. Cheng et al.

ATL specification. Such a pair forms a verification task, which is input to the
Boogie verifier. The Boogie verifier either gives a confirmation that indicates
the ATL specification satisfies the specified OCL contracts, or trace informa-
tion that indicates where the OCL contract violation is detected.

Whether the ER2REL transformation is verified for the given OCL contracts
depends on our encoded Boogie contracts for the execution semantics of each
ATL matched rule. Our encoding is based on existing documentation of ATL
[3,9]. However, the ambiguities in the documentation increase our encoding dif-
ficulty. For example, on line 5 of the ER2REL specification (Fig. 2), the relations
association is bound twice. The ATL documentation does not explicitly specify
how to encode the execution semantics of such a case. We can encode it by either
assuming that:

– The second binding overwrites the first binding. In this case the rela-
tions unique constraint holds, since the relations of each RELSchema ele-
ment will be resolved from the entities of the ERSchema element only; or

– The second binding is composed with the first binding. In this case the
relations unique constraint does not hold, since the relations of each REL-
Schema element will come from both the relships and entities of the ER-
Schema element, and we do not know that the names of relships are all unique
for each ERSchema element, nor that the names of entities and relships of
each ERSchema element are different.

Problem Statement. To resolve the ambiguity here, our quest in this work
is to ensure our encoded execution semantics of the ATL specification soundly
represents the runtime behaviour of its corresponding ASM implementation,
i.e. verifying the soundness of our encoding for the execution semantics of the
ATL specification. Therefore, in the next sections, we first detail our Boogie
encoding for the execution semantics of each ATL matched rule (Sect. 4). Then,
we report our translation validation approach to verify the soundness of our
encoding (Sect. 5).

4 Encoding Metamodels, OCL and ATL Matched Rules

To begin with, we illustrate how to encode the metamodels and OCL constructs
in Boogie, which will be used to encode the execution semantics of ATL matched
rules.

Metamodels. Metamodelling concepts share many similarities with object ori-
ented (OO) programming language constructs. Thus, we reuse the encoding of
OO programs (specifically the memory model) to encode metamodels in Boogie.

Specifically, each classifier in the metamodel gives rise to a unique constant
of type ClassName. Inheritance is defined via a partial order between two clas-
sifiers (multiple-inheritance is currently not supported by our encoding). Each
element of a classifier is abstracted as a reference and generated as a Boogie vari-
able of type ref . Each structural feature is mapped to a unique constant of type

A Sound Execution Semantics for ATL via Translation Validation 139

Field α, where α is of primitive type (i.e. int, bool and string) for an attribute,
and is of ref type for an association. Moreover, all these constants generated for
attributes or associations are extended with the corresponding classifier name
to ensure their uniqueness.

The OO memory model we chose uses an updatable array heap to organise the
relationships between model elements. The heap is of type ref × (Field α) → α.
Thus, it maps memory locations (identified by an element of a classifier, and a
structural feature) to values. A memory access expression o.f is now seen as an
expression read(heap,o,f). An assignment o.f := x is understood as an expres-
sion update(heap,o,f,x), i.e. changing the value of heap at the position given by
the element o and structural feature f to the value of x. In addition, the domain
of the heap includes allocated as well as unallocated elements. To distinguish
between these two, we add a structural feature alloc of type Field bool and
arrange to set it to true when an element is allocated.

OCL Constructs. We encode a subset of OCL data types supported in ATL, i.e.
OclType, Primitive (bool, int and string), Collection (set, ordered-set, sequence,
bag) and Map data types. Overall, 32 OCL operations are supported on the cho-
sen data types. This encoding is based on a Boogie library for the theory of set,
sequence, bag and map provided by the Dafny verification system [11]. Twenty-
three Boogie functions from this library are directly reused in our encoding. One
of them is modified to enhance the verification performance for sequence slicing.
On top of these, we further introduce the ordered-set collection data type (with 3
OCL operations), and 6 OCL iterators on sequence and ordered-set data types
(i.e. exists, forall, isUnique, select, collect and reject iterators). One subtlety
in our encoding of OCL is how to handle the two Undefined values (i.e. null
and invalid). To simplify the type system, we decided to support null as the
Undefined value exclusively, and have not encountered verification problems
caused by this decision.

ATL Matched Rules. According to the specification of the ATL virtual
machine [3], the execution semantics of a given matched rule involves an instan-
tiation step and an initialisation step. The execution semantics of each step is
encoded as a Boogie contract.

We introduce three functions to help our encoding. The dtype function
returns the classifier for a given reference. The find function returns all the
references for the given classifier allocated on the given heap. The getTarget
function returns the corresponding target element generated for a sequence of
source elements. Its inverse function getTarget inverse returns the sequence of
source elements used to generate the given target element.

As an example, the instantiation step for the S2S rule is shown in Fig. 5.
First, it requires that the target element generated for the ERSchema source
element is not allocated yet (line 2–3). Then, it specifies that the instantiation
step will only affect the heaps for the target model (line 4). This is because we
use different heaps to represent the source and target models, and axiomatise
them to be disjoint (an element that is allocated on one heap is not allocated on
the other heap). This ensures, for example, a modification made on the target

140 Z. Cheng et al.

1 procedure S2S matchAll () ;
2 requires (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒
3 getTarget ({ s})=null ∨ ¬read (tarHeap , getTarget ({ s }) , a l l o c)) ;
4 modifies tarHeap ;
5 ensures (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒
6 read (tarHeap , getTarget ({ s }) , a l l o c)
7 ∧ getTarget ({ s }) �= null
8 ∧ dtype (getTarget ({ s }))=REL RELSchema) ;
9 ensures (∀ o: ref , f : F i e ld α •

10 (o=null ∨ read (tarHeap , o , f)=read (old (tarHeap) , o , f)
11 ∨ (dtype (o)=REL RELSchema
12 ∧ f=a l l o c ∧ dtype (getTarget inverse (o) [0])=ER ERSchema))) ;

Fig. 5. The auto-generated Boogie contract for the instantiation step of the S2S rule

heap will not affect the state of the source heap. Next, it ensures that after
the execution of the instantiation step, for each ERSchema element, the corre-
sponding RELSchema target element is allocated (line 5–8). Finally, it ensures
that nothing else is modified, except the RELSchema element(s) created from
the ERSchema element by the instantiation step (line 9–11).

1 procedure S2S applyAll () ;
2 requires (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒
3 read (tarHeap , getTarsBySrcs ({ s }) , a l l o c)
4 ∧ getTarget ({ s }) �= null ∧ dtype (getTarget ({ s }))=REL RELSchema) ;
5 modifies tarHeap ;
6 . . . // t . r e l a t i on s �= nu l l ∧ t . r e l a t i on s . a l l o c
7 . . . // dtype (t . r e l a t i on s)=c l a s s . System . array
8 // leng th (t . r e l a t i on s)=leng th (s . e n t i t i e s)+leng th (s . r e l s h i p s)
9 ensures (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒

10 ArrayLength (read (tarHeap , getTarsBySrcs ({ s }) ,RELSchema . r e l a t i o n s))
11 = ArrayLength (read (srcHeap , s , ERSchema . e n t i t i e s))
12 +ArrayLength (read (srcHeap , s , ERSchema . r e l s h i p s))
13) ;
14 // t . r e l a t i on s [j] = re so l v e (s . e n t i t i e s [j])
15 ensures (∀ s : ref • s∈ f i nd (srcHeap , ER Entity) =⇒
16 (∀ j : int • 0≤j<ArrayLength (read (srcHeap , s , ERSchema . e n t i t i e s)) =⇒
17 read (tarHeap , getTarsBySrcs ({ s }) ,RELSchema . r e l a t i o n s) [j]
18 =getTarsBySrcs ({ read (srcHeap , s , ERSchema . e n t i t i e s) [j] }))) ;
19 // t . r e l a t i on s [j+len (s . e n t i t i e s)] = re so l v e (s . r e l s h i p s [j])
20 ensures (∀ s : ref • s∈ f i nd (srcHeap , ER Entity) =⇒
21 (∀ j : int • 0≤j<ArrayLength (read (srcHeap , s , ERSchema . r e l s h i p s)) =⇒
22 read (tarHeap , getTarsBySrcs ({ s }) ,RELSchema . r e l a t i o n s)
23 [j+ArrayLength (read (srcHeap , s , ERSchema . e n t i t i e s)]
24 =getTarsBySrcs ({ read (srcHeap , s , ERSchema . r e l s h i p s) [j] }))) ;
25 ensures (∀ o: ref , f : F i e ld α •
26 o �= null ∧ read (old (tarHeap) , o , a l l o c) =⇒
27 (dtype (o)=REL RELSchema ∧ f=RELSchema . r e l a t i o n s
28 ∧ dtype (getTarget inverse (o) [0])=ER ERSchema)
29 ∨ (read (tarHeap , o , f)=read (old (tarHeap) , o , f))) ;

Fig. 6. The auto-generated Boogie contract for the initialisation step of the S2S rule

The Boogie contract generated for the initialisation step of the S2S rule is
shown in Fig. 6. First, it requires that the instantiation step of the S2S rule is
finished (line 2–4). Then, it specifies that only the heap for the target model
will be modified (line 5). Next, it ensures that the corresponding target element
is fully initialised, by performing associated binding as specified in the S2S

A Sound Execution Semantics for ATL via Translation Validation 141

rule (line 6–24). In particular, we encode consecutive bindings to the relations
association as a composition. Finally, it ensures that nothing else is modified,
except the binding performed on the created target element (line 25–29).

5 Sound Encoding for the Execution Semantics of ATL
Rules

Each ATL matched rule is actually compiled into two ASM operations by the
ATL compiler, i.e. a matchAll operation (for the instantiation step) and an
applyAll operation (for the initialisation step). An important contribution of
our work is the verification of the soundness of our Boogie encoding for the exe-
cution semantics of the ATL rules, i.e. that the encoded execution semantics of
each ATL rule soundly represents the runtime behaviour of its corresponding
ASM operation. In this section, we first provide a translational semantics of the
ASM language in Boogie, which allows the runtime behaviour of the ASM oper-
ations to be represented using Boogie implementations. Then, we illustrate our
translation validation approach to verify the soundness of our Boogie encoding
for the execution semantics of ATL rules.

Translational Semantics of ASM. Each ASM operation has a list of local
variables, which are encoded as Boogie local variables. An operand stack is used
by each ASM operation to communicate values for local computations, and this
is abstracted as an OCL sequence data type, which is represented as a list in
Boogie called Stk in our encodings. Source and target elements are globally
accessible by every ASM operation, and they are managed by the disjoint source
and target heaps as described in Sect. 4.

The ASM language contains 21 bytecode instructions. Apart from the
general-purpose instructions for control flow and stack handling, the important
feature of the ASM language is the model-handling-specific instructions that are
dedicated to model manipulation.

We provide a translational semantics of the ASM language via a list of trans-
lation rules to Boogie. Each translation rule encodes the operational semantics
of an ASM instruction in Boogie. The only resource we can find to explain the
operational semantics of ASM bytecode instructions is the specification of the
ATL virtual machine [3]. However, it is imprecise and leaves many issues open.
This raises the question of how a correct translation rule, especially for each
model handling instruction, should be encoded in Boogie.

Unlike the other two categories of instructions, the model handling instruc-
tions might have different operational semantics for different model management
systems. This is because ATL aims at interacting with various model manage-
ment systems which offer different interfaces for model manipulation [9].

Our strategy is to focus on the EMF model management system. Then, we
can check the ATL source code (specifically the ATL virtual machine imple-
mentation that relates to EMF) for the operational semantics of each ASM
instruction, and then design the rule correspondingly.

142 Z. Cheng et al.

In what follows, we pick a representative ASM instruction as an example,
i.e. the SET instruction. We first give an informal description of its operational
semantics, and then explain the intuition behind its corresponding translation
to Boogie. The full translational semantics of the ASM language can be accessed
through our online repository given in Sect. 6.

The SET instruction is one of the ASM instructions for model handling
(Fig. 7 (left)). The parameter of a SET instruction is a structural feature f
(either an attribute or an association). Before executing the SET instruction,
the top two elements on the operand stack are an element o (second-top) and a
value v (top) respectively.

The operational semantics of the SET instruction forms a case distinction
according to the instruction parameter f . If f is an association and its multi-
plicity has an upper-bound that is greater than one, then compute the union of
the value of o.f with v. Otherwise, set o.f to v. Finally, the top two elements
are popped.

Thus, the operational semantics of the SET instruction explains the unusual
behaviour of consecutive bindings to the relations association (whose multiplic-
ity has an upper-bound that is greater than one) shown in Sect. 2. Each binding
corresponds to a SET instruction on the ASM level. Therefore, the two consec-
utive bindings correspond to two SET instruction invocations. The result will
be a composition of two bindings.

n: SET f

l e t o=hd(t l (Stk)) , v=hd(Stk) in
assert s i z e (Stk)>1 ∧ o �= null ∧ read (heap , o , a l l o c) ;
i f (i s C o l l e c t i o n (f))
{heap:=update (heap , read (heap , o , f) , read (heap , o , f)∪v) ;}

else {heap:=update (heap , o , f , v) ;}
Stk := t l (t l (Stk)) ;

Fig. 7. SET instruction in ASM (left) and its translation rule in Boogie (right)

The translation rule for the SET instruction is shown in Fig. 7 (right). It
offers no surprise in its operational semantics, except for the auxiliary function
isCollection. The isCollection function (of type Field α → bool) is encoded
while mapping the structural features to the Boogie constants. It is axiomatised
so that it returns true when the given structural feature is an association and
its multiplicity has an upper-bound that is greater than one, and returns false
otherwise.

The translational semantics of the ASM language is encapsulated as a Boogie
library, which can be found in our online repository as outlined in Sect. 6.

Translation Validation of Encoding Soundness. In order to verify the
soundness of our Boogie encoding for the execution semantics of each ATL
matched rule, we define that the execution semantics of an ATL matched rule
encoded in Boogie is sound, if,

A Sound Execution Semantics for ATL via Translation Validation 143

1 procedure S2S matchAll () ; //Contract for in s t an t i a t i on step
2 . . .
3 ensures (∀ s : ref • s∈ f i nd (srcHeap ,ER ERSchema) =⇒
4 dtype (getTarget ({ s }))=REL RELSchema) ;
5

6 implementation S2S matchAll () //Implementation for matchAll operation
7 { . . .
8 #ERSchemas := f i nd (srcHeap ,ER ERSchema) ;
9 counter := 0 ;

10

11 while (counter<s i z e (#ERSchemas))
12 invariant (∀ n: int • 0≤n<counter =⇒
13 dtype (getTarget ({#ERSchemas [n]}))=REL RELSchema) ;
14 decreases s i z e (#ERSchemas)−counter ;
15 { . . . counter := counter+1; }
16 }

Fig. 8. Soundness verification of Boogie encodings for the instantiation step of S2S rule

– the Boogie contract that represents the execution semantics of its
instantiation step is satisfied by the Boogie implementation that represents
the runtime behaviour of its matchAll operation, and

– the Boogie contract that represents the execution semantics of its
initialisation step is satisfied by the Boogie implementation that represents
the runtime behaviour of its applyAll operation.

Each of them forms a verification task, and is sent to the Boogie verifier. If
none of the verification tasks generate any errors (from the verifier), we conclude
that our Boogie encoding for the execution semantics of the ATL matched rules
is sound. Essentially, our approach is based on a translation validation technique
used in compiler verification [12]. The benefit is that we do not need to verify
that the encoded execution semantics of ATL specifications are always sound
with respect to the runtime behaviour of their ASM implementation (which is
difficult to automate). Instead, we can automatically verify the soundness of each
ATL specification/ASM implementation pair.

We demonstrate our approach on the instantiation step of the S2S rule
(Fig. 8). Generally, a Boogie implementation that contains loops is difficult to
verify because the users cannot generally predict how many times the loop exe-
cutes, or whether it will terminate.

The key ingredient to prove the correctness of a loop is to provide the loop
invariant that holds before and after the loop. The general loop invariant for
the Boogie implementation is automatically generated. This is demonstrated
on the soundness verification of Boogie encodings for the instantiation step of
the S2S rule as follows (Fig. 8): In the Boogie implementation for its matchAll
operation, an invariant is generated to ensure that for all the matched source
elements that have been iterated, the postcondition of the instantiation step is
fulfilled (line 12–13). Thus, by the end of the iteration, all the matched source
elements are iterated, and therefore the postcondition of the instantiation step
can be established (line 3–4).

We also use a variant expression to ensure that the loop terminates. A gen-
eral variant expression for the Boogie implementation of a matchAll operation

144 Z. Cheng et al.

is the size of the iterated collection minus the increasing loop counter (line 14).
Since the counter increases on each iteration and the size of the processed col-
lection remains unchanged, we can deduce that there are less elements in the
collection to be iterated.

We can conclude that the execution semantics of an ATL specification
encoded in Boogie is sound when the execution semantics of all the relevant
ATL matched rules encoded in Boogie are sound.

6 Implementation

We have implemented the VeriATL verification system (Fig. 9) to demonstrate
our approach. It accepts the source and target ECore metamodels and an ATL
specification. The output is a sound execution semantics of the ATL specifica-
tion encoded in the Boogie intermediate verification language, which soundly
represents the runtime behaviour of its corresponding ASM implementation. As
a result, the verification of the correctness of the ATL transformation that is
based on our output will be sound.

Fig. 9. Overview of our sound verification of the correctness of the ATL transformation

VeriATL automatically serialises its inputs into three kinds of models. Specif-
ically, the KM3 API is used to serialise the ECore metamodels into the KM3
model2. The ATL extractor API is used to serialise the input ATL specifica-
tion as an ATL model. The ATL virtual machine API is used to serialise the
ASM program into an ASM model. Next, the corresponding Boogie code is auto-
matically generated for each kind of model by a template-based model-to-text
transformation using Xpand3, i.e. the ATL model generates Boogie contracts,
the KM3 model generates Boogie types and constants, and the ASM model pro-
duces Boogie implementations. Then, VeriATL sends the generated Boogie code
to the Boogie verifier (version 2.2), and relies on the Z3 (version 4.3) to perform
automatic theorem proving. Finally, if the Boogie verifier confirms that the exe-
cution semantics of an ATL specification encoded in Boogie is sound, then such
2 KM3 is a domain specific language for metamodel specifications.
3 Xpand. http://wiki.eclipse.org/Xpand/.

http://wiki.eclipse.org/Xpand/

A Sound Execution Semantics for ATL via Translation Validation 145

an encoding will be output by VeriATL. Otherwise, the trace information from
the Boogie verifier, indicating where the encoding unsoundness was detected,
will be output.

Evaluation. We evaluate VeriATL on the ER2REL transformation. Our
ER2REL transformation is a modified version of the one originally developed
by Büttner et al. [5]. The modification does not cause the ATL specification to
behave differently. However, it contains a feature (i.e. consecutive bindings in an
ATL matched rule) that is not considered in the previous work.

Our experiment is performed on an Intel 2.93 GHz machine with 4 GB of
memory running on Windows. Verification times are recorded in seconds. Table 1
shows the performance on automatically verifying the soundness of our Boogie
encoding. The second and third columns show the size of the Boogie code gen-
erated for the instantiation and initialisation step of the ATL matched rule
respectively (shown by Lines of Boogie contract/Boogie implementation). Their
corresponding verification time is shown in the fourth and fifth columns.

Table 1. Performance measures for verifying the encoding soundness of ER2REL

Rule name Boogie (LoC) Veri. time (s) Automation

Instantiation Initialisation Instantiation Initialisation

S2S 13/133 41/200 0.124 0.894 Auto

E2R 13/150 15/79 0.109 0.077 Auto

R2R 13/150 15/79 0.109 0.062 Auto

EA2A 17/202 33/145 0.187 0.328 Auto

RA2A 17/202 33/145 0.187 0.327 Auto

RA2AK 17/225 33/141 0.374 0.311 Auto

Total 90/1062 170/789 1.090 1.999

We also verify our modified ER2REL transformation against the 4 OCL
contracts that are specified by Büttner et al., and produce the same verification
result. Table 2 shows the performance of our transformation correctness veri-
fication. The second column shows the size of the Boogie code generated for
the OCL contracts. Its corresponding verification time is shown in the third
column. In addition, we report that 2 out of 4 OCL contracts are verified semi-
automatically. This is because of incompleteness issues with our approach, which
we analyse in the threat to validity section below.

Due to space limitations, we are unable to show the whole case study. We
refer to our online repository for the generated Boogie programs for verifying
the correctness of ER2REL transformation [7].

Threat to Validity. The experiments strongly demonstrate the feasibility of
our approach. However, our current approach has some limitations:

146 Z. Cheng et al.

Table 2. Performance measures for verifying transformation correctness of ER2REL

Boogie (LoC) Veri. time (s) Automation

unique rel schema names 45 0.624 Auto

unique rel relation names 48 1.716 Semi

unique rel attribute names 48 0.608 Auto

exist rel relation iskey 49 0.562 Semi

Total 190 3.510

– First, the soundness of our approach depends on the correctness of our
encodings for metamodels, OCL, ATL language and ASM bytecode. The cor-
rectness of these encodings are challenging theoretical problems that require
well-defined and commonly accepted formal semantics of each. To our knowl-
edge, none of them are currently available. When there is one, we can adapt
existing techniques to reason the correctness of our encodings [2,8]. Moreover,
our Boogie encodings are intuitive and available for inspection.

– Second, the completeness of our approach remains one of the major concerns.
The incompleteness might be due to known limitations of SMT solvers. It may
also be due to our encodings. For example, the append operation of sequence
data type in our OCL library is encoded by the essential axioms to define
its meaning. The auxiliary axioms such as “any sequence appended with an
empty sequence is the original sequence” are not in our encoding. We think
it is better to present the missing auxiliary axioms as lemmas and introduced
on demand to make the verification task smaller. Moreover, presenting only
the essential axioms is a strategy that helps manual inspection and reduces
the possibility of inconsistent axioms.

– Third, our approach only covers the ATL matched rules in this work. Other
constructs, such as lazy rules and imperative features (e.g. resolveTemp oper-
ation), are not considered. We would like to include them in the near future.
For example, we are currently considering ATL lazy rules, which are called
from the other rules. The lazy rules are not as frequently used as the matched
rules, but are the main source of transformation non-termination.

– Last, because of the underlying SMT solver, the expressiveness of our approach
is based on first order predicate logic with equality. To ensure this expressive-
ness power is useful in practice of MTr verification, we need to experiment
with more ATL transformations that have OCL contracts specified.

7 Related Work

There is a large body of work on the topic of ensuring model transformation
correctness [1]. In this section, we focus on the works that verify the correctness
of MTr by applying formal methods.

Troya and Vallecillo provide an operational semantics for ATL based on
rewriting logic, and use the Maude system for the simulation and reachability

A Sound Execution Semantics for ATL via Translation Validation 147

analysis of ATL specifications [15]. Lúcio et al. develop an off-the-shelf model
checker that is tied to the DSLTrans language. Their model checker allows the
user to check the syntactic correctness (encoded in algebra) of the generated
target models [13]. These approaches are bounded, which means that the MTr
specification will be verified against its contracts within a given search space
(i.e. using finite ranges for the number of models, associations and attributes).
Bounded approaches are usually automatic, but no conclusion can be drawn
outside the search space.

Calegari et al. use the Coq proof assistant to interactively verify that an ATL
specification is able to produce target models that satisfy the given contracts [6].
Inspired by the proof-as-program methodology, further research develops the
concept of proof-as-model-transformation methodology [10,14]. At its simplest,
the idea is to present the model transformation specification and contract as a
theorem. Then, a model transformation implementation can be extracted from
its proof. These approaches are unbounded. Therefore, they are preferable when
the user requires that contracts hold for the MTr specification over an infinite
domain. However, unbounded approaches tend to require guidance from the user.

The situation can be ameliorated by a novel usage of SMT-solvers. The
built-in background theories of SMT solvers give enhanced expressiveness to
handle constraints over an infinite domain. For example, Büttner et al. translate
a declarative subset of the ATL and OCL contracts (for semantic correctness)
directly into first-order-logic formulas [5]. The formulas represent the execution
semantics of the ATL specification, and are sent to the Z3 SMT solver to be
discharged. The result implies the partial correctness of an ATL transforma-
tion in terms of the specified OCL contracts. However, their approach lacks an
intermediate form to bridge between the ATL and the back-end SMT-solver.
This compromises the reusability and modularity of the verifier. In our work,
we extend existing Boogie libraries for our metamodel and OCL encodings. We
also develop a Boogie library that gives a translational semantics to the ASM
language. Each Boogie library is designed modularly, and is made available for
public reuse of verifier design (especially for model transformation languages).

Finally, all the approaches we have just described rely on encoding the exe-
cution semantics of the model transformation specification. We address a dif-
ferent challenge to verify that the execution semantics of an ATL matched rule
encoded in Boogie soundly represents the runtime behaviour of its corresponding
ASM implementation, which makes our approach complementary to the exist-
ing approaches. We developed our approach in Boogie. The Why34 intermediate
verification language would also be suitable to implement our approach.

8 Conclusion

In this work, we have encoded a sound execution semantics for ATL specifica-
tions, and developed the VeriATL verification system for this task. It is imple-
mented in Boogie which allows Hoare-logic-based automatic theorem proving
4 Why3. http://why3.lri.fr/.

http://why3.lri.fr/

148 Z. Cheng et al.

via the Z3 theorem prover. We adapt the memory model used in the verification
of object-oriented programs to explain the concepts within MDE. We explain
precisely the runtime behaviour of ASM implementations by encoding a transla-
tional semantics of the ASM language in Boogie. We also articulate a translation
validation approach to verify the soundness of our Boogie encoding for the exe-
cution semantics of the ATL matched rule. Consequently, we are able to soundly
verify the ATL specification against its specified OCL contracts, based on our
sound encodings for the execution semantics of the ATL matched rules.

References

1. Ab.Rahim, L., Whittle, J.: A survey of approaches for verifying model transforma-
tions. Soft. Syst. Modeling (2015) (to appear)

2. Apt, K.R., de Boer, F.S., Olderog, E.R.: Verification of Sequential and Concurrent
Programs, 3rd edn. Springer, Berlin (2009)

3. ATLAS Group: Specification of the ATL virtual machine. Technical report, Lina
& INRIA Nantes (2005)

4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., M. Leino, K.R.: Boo-
gie: a modular reusable verifier for object-oriented programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

5. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-
shelf’ SMT solvers. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 432–448. Springer, Heidelberg (2012)

6. Calegari, D., Luna, C., Szasz, N., Tasistro, Á.: A type-theoretic framework for
certified model transformations. In: Davies, J. (ed.) SBMF 2010. LNCS, vol. 6527,
pp. 112–127. Springer, Heidelberg (2011)

7. Cheng, Z., Monahan, R., Power, J.F.: Online repository for VeriATL system (2013).
https://github.com/veriatl/veriatl

8. Combemale, B., Crégut, X., Garoche, P., Thirioux, X.: Essay on semantics defin-
ition in MDE - an instrumented approach for model verification. J. Softw. 4(9),
943–958 (2009)

9. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

10. Lano, K., Clark, T., Kolahdouz-Rahimi, S.: A framework for model transformation
verification. Formal Aspects Comput. 27(1), 193–235 (2015)

11. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

12. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. SIGPLAN Not. 41(1), 42–54 (2006)

13. Lúcio, L., Barroca, B., Amaral, V.: A technique for automatic validation of model
transformations. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010,
Part I. LNCS, vol. 6394, pp. 136–150. Springer, Heidelberg (2010)

14. Poernomo, I.H.: Proofs-as-model-transformations. In: Vallecillo, A., Gray, J.,
Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 214–228. Springer,
Heidelberg (2008)

15. Troya, J., Vallecillo, A.: A rewriting logic semantics for ATL. J. Object Technol.
10(5), 1–29 (2011)

https://github.com/veriatl/veriatl

	A Sound Execution Semantics for ATL via Translation Validation
	1 Introduction
	2 Motivating Example
	3 Proving Transformation Correctness
	4 Encoding Metamodels, OCL and ATL Matched Rules
	5 Sound Encoding for the Execution Semantics of ATL Rules
	6 Implementation
	7 Related Work
	8 Conclusion
	References

