Skip to main content

Star-Unfolding Polygons

  • Conference paper
  • First Online:
Book cover Automated Deduction in Geometry (ADG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9201))

Included in the following conference series:

Abstract

In this paper we initiate the study of geodesic star unfoldings. They are a generalization of shortest-path star unfoldings of 3D convex polyhedra and have a very simple characterization. We also address several problems concerning the existence of shortest-path star unfoldings on specified source point sets, and of reconstructing shortest-path star unfoldings with given ridge tree combinatorics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The 1-skeleton is the graph of polyhedral edges.

  2. 2.

    The modifier “abstract” is used to emphasize that, a priori, such polygons are not guaranteed to arise from star unfoldings of 3D convex polyhedra.

References

  1. Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discret. Comput. Geom. 4(1), 591–604 (1989)

    Article  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a polytope with applications. SIAM J. Comput. 26, 1689–1713 (1997)

    Article  MathSciNet  Google Scholar 

  3. Alexandrov, A.D.: Convex Polyhedra. Springer Monographs in Mathematics. Springer Verlag, Berlin Heidelberg (2005). English Translation of Russian edition, Gosudarstv. Izdat. Tekhn.-Teor.Lit, Moscow-Leningrad (1950)

    Google Scholar 

  4. Aronov, B., O’Rourke, J.: Non-overlap of the star unfolding. Discret. Comput. Geom. 8, 219–250 (1992)

    Article  MathSciNet  Google Scholar 

  5. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, and Polyhedra. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  6. Dillencourt, M.B.: Realizability of Delaunay triangulations. Inf. Process. Lett. 33(6), 283–287 (1990)

    Article  MathSciNet  Google Scholar 

  7. Lambert, T.: An optimal algorithm for realizing a Delaunay triangulation. Inf. Process. Lett. 62(5), 245–250 (1997)

    Article  Google Scholar 

  8. Mount, D.: On finding shortest paths on convex polyhedra. Technical report 1495, University of Maryland (1985)

    Google Scholar 

  9. Sharir, M., Schorr, A.: On shortest paths in polyhedral spaces. SIAM J. Comput. 15(1), 193–215 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research was supported by the NSF grants CCF-1016988 and CCF-1319366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Streinu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Alam, M.A., Streinu, I. (2015). Star-Unfolding Polygons. In: Botana, F., Quaresma, P. (eds) Automated Deduction in Geometry. ADG 2014. Lecture Notes in Computer Science(), vol 9201. Springer, Cham. https://doi.org/10.1007/978-3-319-21362-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21362-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21361-3

  • Online ISBN: 978-3-319-21362-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics