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Abstract. Laplacian-based mesh processing technique is a kind of shape
deformation in Computer Graphics modeling. It is hard to deform shapes which
constructed by a lot of vertices in real time, because computational cost is high.
A cages-based mesh deformation method is used in order to control the com-
putational cost. A cage is a polyhedron which envelops an original dense model
and is constructed by few meshes. The main advantages of using cages in shape
deformations are controlling high speed computation. Currently, the coarse cage
is constructed mainly by hand, and the construction usually takes several hours,
even longer. Furthermore, when the shape of the model to be deformed is
complex, it is very hard to construct its coarse cage by hand. Therefore it is
important to develop a convenient method to generate the coarse cage envel-
oping a model. In this paper, we propose a method of automatic cage generation.
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1 Introduction

Mesh deformation is a common process in geometry modeling and computer anima-
tion. Geometry modeling techniques have become an important key technology in the
industrial design and development process. Similarly, in computer animation we may
want a realistic behavior, simulating physics. Therefore, we need flexible tools for
mesh deformation to achieve the desired results easily. In the past years there have been
many methods, such as Free-form deformation (FFD) [1], Radial Basis Functions
(RBF) [2], curve based deformation [3], skeletons [4, 5] and physics simulation [6].

Also, in recent years many discrete deformation techniques based on Laplacian
mesh representation have been published [7–9]. They can support interactive work by
encoding differential properties and positional constraints in a linear system. Laplacian
operators are described by the uniform weighting method. This approach is numerically
stable, but is not able to compute in real-time, depending on the number of constraints.
Especially, modern computer graphics models are often created or acquired at a very

© Springer International Publishing Switzerland 2015
C. Stephanidis (Ed.): HCII 2015 Posters, Part I, CCIS 528, pp. 690–695, 2015.
DOI: 10.1007/978-3-319-21380-4_116



high resolution in order to maintain a convincing level of realism. The huge number of
vertices makes direct manipulation of the models tedious and computationally expen-
sive. We would like a deformation method able to work in real-time, for interactive
applications, which limits the computation time. Also, it is desirable to have a conve-
nient and easy to use system which makes it simple for users to get quickly familiar with
it. A way to reduce computational cost is to build a similar but coarse structure with
fewer vertices, and then deform the dense model through the coarser structure. This
coarser structure, which envelops the original dense model, is called cage.

The first approach cage based method of Laplacian mesh deformation comes from
Floater et al. [10] and Ju et al. [11]. Both studies aimed at looking for an interpolation
method for surfaces. Initially, Floater presented a 2D mean value coordinates
(MVC) over quasi-convex polygons, then developed a 3D version of the algorithm.
Then, Ju et al. developed another solution by using the Floater’s 2D approach. Next,
Joshi et al. [12] developed another method to set harmonic coordinates (HC) success-
fully avoiding some of the MVC drawbacks. Also, Lipman et al. [13] developed a
method with cage faces data in deformation operators to achieve a natural deformation
with shape preserving.

In cage based methods, a coarse cage enveloping a model is required to be con-
structed in advance for deforming the model. Currently, the coarse cage is constructed
mainly by hand [10–13], and the construction usually takes several hours, even longer.
Furthermore, when the shape of the model to be deformed is complex, it is very hard to
construct its coarse cage by hand. Therefore it is important to develop a convenient
method to generate the coarse cage enveloping a model.

2 Cage Generation Algorithm

First, we outline our method. The main steps of our method are as follows:

1. Compute the Bounding Volume (BV) of the dense mesh, and then Construct BV
Tree by partitioning the BV recursively.

2. Generate the Convex Hull of a set of vertices constructing all BVs.
3. Subdivide the triangles of Convex Hull
4. Elasticize each edge of triangular net

2.1 Bounding Volumes Tree Generation

The first step of our algorithm is to compute the bounding volume (BV) of the original
dense mesh model. In general, the idea is for the BV to have cheaper overlap tests than
the complex objects they bound [14]. The properties for the BV include tight fitting,
using little memory, encapsulating objects, and so on.

There are many kinds of the BV, such as Sphere, AABB (Axis-Aligned Bounding
Box), OBB (Oriented Bounding Box), and Convex Hull [14]. We use the AABB and
the OBB, as shown in Fig. 1(b). The AABB is a rectangular six-sided box categorized
by having its faces oriented in such a way that its normal are at all times parallel with
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the axes of the given coordinate system. The OBB is a rectangular block, like an
AABB but with an arbitrary orientation. The arbitrary orientation is computed by
principal component analysis, and so on.

After computing BV, we generate Bounding Volumes Tree (BVT). The BVT is a
tree hierarchy which is generated by partitioning the BV recursively [14]. The original
set of BV forms the leaf nodes of the tree that is this BVT. We describe the way of the
BVT. (1) We compute the centroid of the original dense model. (2) We select the
normal of the plane partitioning the space it is in into infinite sets of points on either
side of the plane. (3) We partition the space by the plane passing through the centroid
with the normal. (4) We construct 2 BVs by using the vertices in each halfspace. For
example of AABB, it is possible to partition it by X-Y, Y-Z, and Z-X plane, respec-
tively. Also, it is possible to partition it into 8 parts (Octree). A partitioned example is
illustrated in Fig. 1(c).

2.2 Convex Hull Generation

The next step of our algorithm is to generate convex hull by using the vertices con-
structing BVT. It is so quickly and easy to generate the convex hull that the number of
vertices constructing each BV is 8. We use Barber method [15] to generate the convex
hull. We show an example in Fig. 1(d).

2.3 Triangles Subdivision

The convex hull, which is generated in Sect. 2.2, is consisted of triangles. We sub-
divide these triangles, if necessary. The midpoint is inserted into each edge con-
structing triangles, and then we generate triangular net by subdividing triangles in
quarter. A subdivided example is illustrated in Fig. 1(e).

However, several warping triangles occur, when they are subdivided. Then we
remesh the triangles, if necessary.

2.4 Elasticizing Each Edge of the Triangular Net

We regard the triangular net as the net with elastic force, contract the triangular net.
A vertex of triangular net is moved to the position which the energy of elastic force
minimizes. Similarly, all vertices are translated iteratively until the total energy mini-
mizes. As a result, we generate a Cage.

2.4.1 Definition of Energy
We describe the triangular net with elastic force. All vertices are connected to each
other with spring. We define the energy of each vertex as follows:
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EðxÞ ¼ a
X5

i¼0

max
vj

pðvjÞ � pðxÞ� � � ei
� �� �2

ð1Þ

where, pðxÞ is a candidate vertex, pðvjÞ is each vertex connecting pðxÞ, a is spring
constant, ei is unit vector along each positive or negative axis.

We describe the contracting procedure as follows:

1. Select a candidate vertex x among vertices constructing triangular net.
2. Determine a new position which the energy minimizes when the vertex x moves

very short distance from the current position to 26-adjacency, respectively.
3. Go to the step 1, until all vertices determine their new positions.
4. Move all vertices to their new positions, respectively.
5. Repeat step 1 to 4, until the all energy drops below a threshold value.

2.4.2 Collision Detection
A vertex x happens to intersect with the original model, when the x moves to the new
position decided in Sect. 2.4.1. This case violates a fundamental rule that the cage
includes the original model. Therefore we have to avoid intersecting with it.

In the case of intersecting of edges constructing the triangular net with faces
consisting of the original model according to moving the x to the new position, we do
not allow the x to move.

3 Results

Our algorithm developed in this paper is implemented with VC ++ 2010 and OpenGL,
and runs on the PC with 3.4 GHz Core i7, 4.0 GB memory, and Windows 7 Professional
(32bit). A result is illustrated in Fig. 1(a)−(f). The number of faces of the original dense
model, is shown in Fig. 1(a), is 11,794. In this example which is shown in Fig. 1(b), we
selected the AABB as the BV. Figure 1(c) is the BVT which is partitioned the BV into 2
parts along the Y axis twice, and then along the X axis twice, recursively. A convex hull,
is shown in Fig. 1(d), was generated, and was subdivided. Next, the triangular net was
transformed from the convex hull. We got the Cage according to contracting the tri-
angular net as shown in Fig. 1(f). The number of the faces of the Cage is 344.

4 Conclusions

In this paper, we propose an automatic method to generate the coarse cage for a given
original dense mesh. The original mesh is first enclosed the bounding volume, and the
bounding volume is partitioned into 2 parts or 8 parts, recursively. Next, convex hull is
generated by using the vertices constructing the bounding volumes. The convex hull is
consisted of triangles. These triangles are subdivided and remeshed, if necessary. The
triangular net with elastic force is contracted by moving the vertices to their new
positions until the total energy minimizes. Finally, we generate a cage.
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(a) An original dense model. (b) A bounding volume.

(c) A bounding volume tree. (d) A convex hull.

(e) A triangular net with elastic force. (f) A Cage. 

Fig. 1. An example of our method

694 T. Kanaya et al.



References

1. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models.
SIGGRAPH Comput. Graph. 20(4), 151–160 (1986)

2. Botsch, M., Kobbelt, L.: Real-time shape editing using radial basis functions. Comput.
Graph. Forum 24(3), 611–621 (2005)

3. Peng, Q., Jin, X., Feng, J.: Arc-length-based axial deformation and length preserved
animation. In: Computer Animation 1997, pp. 86–92 (1997)

4. Yoshizawa, S., Belyaev, A.G., Seidel, H.-P.: Skeleton-based variational mesh deformations.
Comput. Graph. Forum 26(3), 255–264 (2007)

5. Yan, H.-B., Shi-Min, H., Martin, R.R., Yong-Liang, Y.: Shape Deformation Using a
Skeleton to Drive Simplex Transformation. IEEE Trans. Visual. Comput. Graph. 14(3),
693–706 (2008)

6. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In:
Proceedings of the 14th Annual Conference On Computer Graphics and Interactive
Techniques, SIGGRAPH 1987, pp. 205–214 (1987)

7. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.-P.: Laplacian
surface editing. In: 2004 Eurographics Symposium on Geometry Processing 2004, pp.179
−188 (2004)

8. Sorkine, O.: Laplacian mesh processing. In: STAR Proceedings of Eurographics 2005,
pp. 53–70 (2005)

9. Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D.: A sketch-based interface for
detail-preserving mesh editing. ACM Trans. Graph. 24(3), 1142–1147 (2005)

10. Floater, M.S., K´os, G., Reimers, M.: 3D Mean value coordinates. Comput. Aided Geom.
Des. 22(7), 623–631 (2005)

11. Ju, T., Schaefer, S.,Warren, J.: Mean value coordinates for closed triangular meshes. In:
ACM SIGGRAPH 2005, pp. 561–566 (2005)

12. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for
character articulation. ACM Trans. Graph. 26(3), 1–9 (2007)

13. Lipman, Y., Levin, D., Cohen-Or, D.: Green coordinates. ACM Trans. Graph 27, 78:
1–78:10 (2008)

14. Ericson, C.: Real-Time Collision Detection (The Morgan Kaufmann Series in Interactive
3-D Technology). CRC Press, Boca Raton (2004)

15. Bradford, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls.
ACM Trans. Graph. on Math. Softw. 22(4), 469–483 (1996)

A Method of Automatic Cage Generation for Shape Deformation 695


	A Method of Automatic Cage Generation for Shape Deformation by Using Elastic Models
	Abstract
	1 Introduction
	2 Cage Generation Algorithm
	2.1 Bounding Volumes Tree Generation
	2.2 Convex Hull Generation
	2.3 Triangles Subdivision
	2.4 Elasticizing Each Edge of the Triangular Net
	2.4.1 Definition of Energy
	2.4.2 Collision Detection


	3 Results
	4 Conclusions
	References


