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Abstract. Individuals with Autism Spectrum Disorders (ASD) often have
difficulty recognizing emotional cues in ordinary interaction. To address this, we
are developing a social robot that teaches children with ASD to recognize
emotion in the simpler and more controlled context of interaction with a robot.
An emotion recognition program using the Viola-Jones algorithm for facial
detection is in development. To better understand emotion expression by social
robots, a study was conducted with 11 college students matching animated facial
expressions and emotionally neutral sentences spoken in affective voices to
various emotions. Overall, facial expressions had greater recognition accuracy
and higher perceived intensity than voices. Future work will test the recognition
of combined face and voices.
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1 Introduction

Recognizing and understanding emotional cues while interacting with other people is
vital for effective communication as these cues contain information about meaning,
intention, and appropriate responses. People with Autism Spectrum Disorders
(ASD) often lack the ability to decipher these cues and this challenge has been iden-
tified as one of the biggest barriers to their social inclusion [1]. To help children with
ASD develop richer emotional interaction, researchers have used interactive robots and
shown positive results [2–8]. Robots allow for a simplified, predictable, and reliable
environment where the complexity of interaction can be controlled and gradually
increased [9]. Robots can also work as embedded reinforcers of learning [7] and thus,
they can form rapport with children.

Our project aims to enhance the emotional communication of children with ASD
using social robots. The work described here is a portion of that larger project. In order
to enhance communication, we must examine how children with ASD and neurotypical
children understand and interpret emotion and how the robot can encourage better
emotional interaction. As a test platform, we are using an iOS-based interactive robot,
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Romo, which is non-humanoid, but has important human expressive characteristics
(eyelids, mouth, voice, etc.) [10, 11] and thus, can have emotional communication with
children (Fig. 1).

For successful emotional interaction, the robot needs capabilities of emotion rec-
ognition and expression. On the emotion recognition side, we are developing software
to recognize emotion in facial expressions extracted from real-time video of the indi-
vidual during interaction. This portion of the research is in progress. For emotional
expression, we conducted an experiment with college students to determine how
Romo’s facial expressions and a variety of equivalent affective voice recordings are
interpreted.

2 Design and Implementation of Emotion Recognition
and Expression

2.1 Emotion Recognition on Romo

With emotion recognition, we can monitor a child’s affective state for intervention
purposes. We can also verify if the child-robot interaction successfully yields the
intended goal (e.g., enhancing social interaction). While researchers have suggested a
variety of emotion recognition methods, no single method has been perfectly successful
[12]. Also, it should be differentiated depending on users’ characteristics, tasks, and
environments. We have developed a multimodal emotion recognition system
(facial + voice) for drivers with Traumatic Brain Injury (TBI) [13]. For that project, we
developed a facial expression recognition system using the Support-Vector Machines
(SVMs) algorithm, which could detect positive, negative, and neutral states. Our
second-generation facial detection system for the current project has been developed
using the Viola-Jones algorithm in Objective-C. It can detect more specific affective
states than our previous version, such as happiness, surprise, and anger, etc. For higher
recognition accuracy and additional affective states, we are currently updating our
system using the standardized database sets (e.g., Cohn-Kanade [14] and MMI
data-base [15]). Future work will utilize a dataset of children’s emotional expressions
that we are currently creating.

Fig. 1. Romo
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2.2 Emotion Expression on Romo

After estimating a child’s affective state, a robot is required to respond in an emo-
tionally appropriate manner. For facial expression, we tested the standard expressions
provided by the Romo app including curious, excited, happy, neutral, sad, scared, and
sleepy (Fig. 2). For voice expression, a young male adult and a young female adult
recorded emotion-independent sentences [16] (“Can I get some food?”, “It’s time to
go.”, and “What are you doing?”) using affective voice types for the same seven
emotion. We controlled Romo’s face expression and voice expression using the Romo
software development kit.

3 User Evaluation of Emotion Expression on Romo

3.1 Method and Procedure

This paper focuses on the evaluation of users’ recognition of ROMO’s facial and voice
expressions, rather than Romo’s recognition performance, which as mentioned is still
in development. The study sought to understand how emotion expressed by Romo is
interpreted through voice and facial cues, so that we can develop salient emotional cues
that can be used in Romo and other interactive robots. Clear cues will provide a good
foundation for our efforts to improve the emotional understanding of children with
ASD.

Eleven college students (ages 18–22, 2 females and 9 males) participated in this
experiment. No information was collected regarding participants’ ASD or neurotypical
status. We used a within subject design in which each participant was subject to
face-only and voice-only conditions. The expression could be seen/heard multiple
times by tapping the screen. There were 42 trials for voice (7 emotions, 3 different
phrases, and 2 genders). For consistency, there were also 42 trials for face, each of the
seven emotions repeated six times. After presentation of the stimulus, the participant
was asked to choose one out of seven emotions that the stimulus conveyed and rate
how strong the emotion was on a scale of 1 (“Not at all”) to 7 (“Very”). The face and
voice conditions were presented separately and the presentation order was alternated.
Within each condition, the trials were randomized for each participant.

Fig. 2. Happy, curious, and sad (from left to right)
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3.2 Results

A paired samples t-tests revealed a significant difference of recognition accuracy
between faces (M = 75.70, SD = 14.25) and voices (M = 48.57, SD = 19.13),
t(6) = −2.46, p < .05. For all emotions except curious, faces had higher recognition
accuracy, particularly the happy, scared, and sleepy conditions (Fig. 3). There was also
a trend toward more intense ratings of faces (average 5.78) compared to voices (average
4.57).

4 Discussion and Future Work

The data show that emotion conveyed by facial expression tended to be more recog-
nizable and more intense than that in voice. However, there was no clear pattern of
differences in terms of the traditional valence and arousal dimensions, which requires
further research.

We plan to combine face and voice stimuli into one condition to test the strength of
the combined emotion. We will utilize both matched face and voice affect and con-
tradictory affects. The mismatched condition is expected to indicate whether faces or
voices produce stronger emotional cues when combined. The emotion detection pro-
gram will be expanded to recognize a wider variety of emotions and to appropriately
detect children’s emotional states.

Acknowledgements. This material is based upon work supported by the National Institutes of
Health under grant No. 1 R01 HD082914-01.

Fig. 3. Recognition accuracy for voice and face across all conditions
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