
Skew Circuits of Small Width

Nikhil Balajia,1, Andreas Krebsb, Nutan Limayea

aIndian Institute of Technology, Bombay, India.
bUniversity of Tübingen, Germany.

Abstract

A celebrated result of Barrington (1985) proved that polynomial size, width-
5 branching programs (BP) are equivalent in power to a restricted form of
branching programs – polynomial sized width-5 permutation branching pro-
grams (PBP), which in turn capture all of NC1. On the other hand it is known
that width-3 PBPs require exponential size to compute the AND function.
No such lower bound is known for width-4 PBPs, however it is widely con-
jectured that width-4 PBPs will not capture all of NC1. In this work, we
study the power of bounded width branching programs by comparing them
with bounded width skew circuits.

It is well known that branching programs of bounded width have the same
power as skew circuit of bounded width. The naive approach converts a BP
of width w to a skew circuit of width w2. We improve this bound and show
that BP of width w ≥ 5 can be converted to a skew circuit of width 7. This
also implies that skew circuits of bounded width are equal in power to skew
circuits of width 7. For the other way, we prove that for any w ≥ 2, a skew
circuit of width w can be converted into an equivalent branching program
of width w. We prove that width-2 skew circuits are not universal while
width-3 skew circuits are universal and that any polynomial sized CNF or
DNF is computable by width 3 skew circuits of polynomial size. It is known
that Parity does not have small CNFs or DNFs. It is easy to see that Parity
has width-4 skew circuits.

We prove that a width-3 skew circuit computing Parity requires exponen-
tial size. This gives an exponential separation between the power of width-3

Email addresses: nbalaji@cse.iitb.ac.in (Nikhil Balaji), mail@krebs-net.de
(Andreas Krebs), nutan@cse.iitb.ac.in (Nutan Limaye)

1This work was done while the author was a graduate student at the Chennai Mathe-
matical Institute

Preprint submitted to Theoretical Computer Science June 21, 2016

skew circuits and width-4 skew circuits.

Keywords: Branching Programs, Barrington’s Theorem, Skew Circuits,
Lower bounds, Parity

1. Introduction

The class NC captures the hierarchy of decision problems that are solvable
efficiently by Boolean circuit families of polylogarithmic depth and polyno-
mial size. The question of whether NC is strictly contained in P is an impor-
tant open question in Complexity theory. In fact, it is conjectured that the
inclusion between the classes in this hierarchy namely, NCi for i ≥ 1, i ∈ N
(problems solvable by Boolean circuit families of bounded fan-in, O(logi n)-
depth and polynomial size) is strict.

In this paper, our focus is on NC1. NC1 occupies a central position in the
study of small depth circuits. NC1 consists of functions computable by circuit
families built with bounded fan-in AND, OR and NOT gates of logarithmic
depth and polynomial size. NC1 itself is contained in Logspace [1] and many
important integer arithmetic operations like iterated addition, multiplication,
division and powering are in uniform NC1 [2, 3]. In fact, all regular languages
are contained in NC1 and there is a regular language that is NC1-hard [4].
However there are hardly any lower bounds known against NC1.

Several useful characterizations of NC1 has emerged over the years:

1. Any function computable by a polynomial size Boolean formula is in
NC1 [5].

2. Uniform NC1 is exactly those class of languages recognized by Alter-
nating Turing Machines in logarithmic time [6].

3. NC1 contains exactly those functions that are computable by branching
programs of bounded width [7].

4. NC1 contains exactly those regular languages that are characterized by
having a monoid containing a non-solvable group [8].

Our interest in NC1 is motivated by the celebrated result of Barrington
[7], that Branching Programs of width 5 are sufficient to capture NC1 in its
entirety. We take a brief detour to discuss the status of circuit and branching
program lower bounds discovered so far, before stating our results.

2

1.1. Circuit Lower Bounds

In the 1980’s a flurry of results gave superpolynomial lower bounds for ex-
plicit functions against even more restricted circuit classes namely, AC0,ACC0

and TC0. H̊astad [9], building on works of Furst, Saxe, Sipser [10] and
Yao [11], showed that constant depth circuits over AND, OR and NOT gates
require exponential size to compute the parity function. The main tool in
proving these results was the method of random restrictions. Here one ar-
gues that a constant depth over AND, OR and NOT gates will simplify to a
constant function with high probability when some of its variables are set to
constants, and noting that parity is not a function that shares this property.

Razborov [12] and Smolensky [13] further strengthened these lower bounds
to prove that even if we augment AC0 circuits with MODp gates (a MODm

gate outputs 1 if the number of 1’s input to it is 0 modulo m), they cannot
compute the MODq function (and also the Majority function) for distinct
primes p, q. They derived these lower bounds via the polynomial method [14].
However, when m is composite, all the lower bound techniques devised so
far grind to a halt, and we have no strong lower bounds for a function in
NP against ACC0, even though it is widely believed that such circuits cannot
even compute the Majority function. Recently, drawing on decades of work
in complexity theory, Williams proved that NEXP * ACC0 [15].

1.2. Branching Program Lower Bounds

Branching programs were originally introduced to understand space bounded
computation. They were first defined in [16] and formally studied by Masek
in his thesis [17]. Borodin et al.[18] proved that AC0 is contained in the class
of functions computed by bounded width branching programs and conjec-
tured that Majority cannot be computed by them. In a surprising result,
Barrington showed that in fact, width 5 branching programs can compute
all of NC1 and hence the Majority function.

After the strong lower bound results discussed above for AC0 and ACC0,
the question of proving lower bounds for NC1 gained a lot of attention. How-
ever this has turned out to be a notorious open problem, though in general
the state of affairs in branching programs is marginally better than that of
Boolean circuits (though, of course, no super polynomial lower bounds are
known for any explicit function in NP). We refer the reader to two excellent
sources – Razborov’s survey [19] and Jukna’s book [20] – for an overview of
branching program lower bounds.

3

The branching program characterization of NC1 has provided an avenue
to understand the power of classes that reside inside NC1. Though proving
lower bounds for width 5 branching programs is equivalent to proving lower
bounds for NC1, it is conceivable that proving lower bounds for width 4
branching programs is easier. In this regard, it is known [21] that width 3
branching programs of a restricted type (permutation branching programs)
require exponential size to compute the AND function. It is conjectured,
but not known so far that width-4 permutation branching programs cannot
compute the AND function. It is worthwhile to contrast this against the
situation at width 5, where permutation branching programs are known to
be as powerful as general branching programs of width 5 and hence NC1 itself.

1.3. Skew Circuits

Skew circuits were originally introduced by Venkateswaran [22] to give
uniform circuit characterizations of nondeterministic time and space classes.
Using these, he turns questions about complexity classes like P,NP,PSPACE
to questions about the relative power of Boolean circuits with structural
restrictions. The Branching Program model lends itself to an easy skew
circuit characterization and vice-versa. Arithmetic skew circuits have been
extensively investigated in relation to the Determinant in the algebraic com-
plexity setting and there are a host of interesting upper/lower bounds known
for them [23, 24, 25, 26].

1.4. Our Results

Bounded width branching programs can be equivalently thought of as
bounded width skew circuits (see for example [27]). In this paper, we take a
closer look at this relationship. The folklore construction2 converts a polyno-
mial size branching program of width w into a polynomial size skew circuit of
width w2. We improve this construction and show that any bounded width
branching program of width greater than or equal to 5 can be converted
into an equivalent skew circuit of width 7. We also study the conversion of
skew circuits into branching programs. Here, the known construction con-
verts a skew circuit of width w into a branching program of width w+ 1 [27].
We improve this construction and prove that a polynomial size skew circuit
of width w can be converted into a polynomial size branching program of

2Replace each wire by an AND gate and each node by an OR gate.

4

width w. These results prove that width 7 skew circuits of polynomial size
characterize NC1.

These structural results allow us to examine the set of languages in NC1

by varying the width of skew circuits between 1 and 7. Like for permutation
branching programs, some natural questions arise for bounded width skew
circuits. We start by examining the power of width 2 skew circuits. We
observe that they are not universal as they cannot compute parity of two
bits.

We then study the power of width 3 skew circuits. Recall that a CNF
(DNF) is an AND (OR) of ORs (ANDs) of variables, i.e. in a CNF the AND
gate is (possibly) non-skew. We implement a CNF by a width 3 skew circuit.
Formally, we prove that any k-CNF or any k-DNF of size s has width 3 skew
circuits of length O(sk). Given that any Boolean function on n variables has
a CNF of exponential (in n) size, this also proves that width 3 skew circuits
are universal.

We consider the problem of proving lower bound for width 3 skew circuits.
A natural candidate is a function which has no polynomial sized CNF or
DNF. It is known that Parity is one such function. We prove that Parity
requires width 3 skew circuits of exponential size. We observe that Parity and
Approximate Majority have respectively, linear and polynomial size width 4
skew circuits. This separates width 3 skew circuits from width 4 skew circuits.

1.5. Organization of the paper

The rest of the paper is organized as follows: In Section 2, we introduce
the branching programs, permutation branching programs and skew circuits,
and present some obvious containments. In Section 3, we present our im-
proved results of simulation of branching programs by skew circuits and vice
versa. In Section 4, we explore the skew circuit classes of width 1 to 7 and
present some upper and lower bounds. In Section 5, we give an exponen-
tial separation between skew circuits of width-3 and width-4 via the Parity
function. We discuss some questions that remain unanswered by our work in
Section 6.

2. Preliminaries

In this section we introduce some notations and preliminaries which we
will use in the rest of the paper. We refer the reader to a standard text like
[20] for definitions of standard circuit complexity classes.

5

s

· · ·

· · · t

t′

x1

¬x1

¬x2

¬x2

x2x2 xn−1

¬xn−1

¬xn−1

xn−1

¬xn

xn
xn−1

¬xn−1

Figure 1: A width 2 BP computing Parity of n bits

A directed acyclic graph G = (V,E) is called layered if the vertex set of
the graph can be partitioned, V = V1 ∪ . . . ∪ V` in such a way that for each
edge e = (u, v) there exists 1 ≤ i < ` such that u ∈ Vi and v ∈ Vi+1. Given
a layered graph G the length of the graph is the number of layers in it and
the width of the graph is the maximum over i ∈ [`], |Vi|.

Definition 1. (Branching Programs) A Deterministic Branching Program
(BP) is a layered directed acyclic graph G with the following properties:

• There is a designated source vertex s in the first layer (of in-degree 0)
and a sink vertex t (of out-degree 0) in the last layer.

• The edges are labeled by an element of X ∪ {0, 1}, where X is the set
of input variables to the branching program.

The branching program naturally computes a boolean function f(X), where
f(X) = 1 if and only if there is path from s to t in which each edge is labeled
by a true literal or a constant 1 on input X. The length (width) of the BP
is the length (respectively, width) of the underlying layered DAG.

We will denote the class of languages accepted by width-w BP by BPw.
Figure 1 shows a width-2 branching program that computes the Parity func-
tion on n inputs.

Barrington [21, 7] defined a restricted notion of branching programs called
the Permutation Branching Program (PBP):

Definition 2. (Permutation Branching Programs as a graph) A width-w
PBP is a layered width w BP in which the following conditions hold:

6

L5

L4

L3

L2

L1

α β α−1 β−1

Figure 2: A Permutation branching program of width 5

• There are designated source vertices s1, s2, . . . , sw in the first layer, say
layer 1 (of in-degree 0) and sink vertices t1, t2, . . . , tw (of out-degree 0)
in the last layer, layer `.

• Each layer has exactly w vertices.

• In each layer 1 ≤ i < `, all the edges are labeled by a unique variable,
say xji.

• In each layer 1 ≤ i ≤ ` and b ∈ {0, 1}, the edges activated when xji = b
forms a permutation/matching, say θi,b.

The permutation branching program naturally computes a boolean func-
tion f(X), where f(X) = 1 if and only if there is path from s1 to t1, s2 to
t2, and so on till sw to tw, where in each path each edge is labeled by a true
literal or a constant 1 on input X. We will refer to the class of languages
accepted by polynomial sized width-w PBP by PBPw.

The above definition of PBP can be rephrased as follows:

Definition 3. (Permutation Branching Programs as a set of instructions) A
width-w length-` PBP is a program given by a set of ` instructions in which
for any 1 ≤ i ≤ `, the ith instruction is a three tuple 〈ji, θi, σi〉, where ji is
an index from {1, 2, . . . , |X|}, θi, σi are permutations of {1, 2, . . . , w}. The
output of the instruction is θi if xji = 1 and it is σi if xji = 0. The output
of the program on input x is the product of the output of each instruction of
the program on x.

7

We say that a permutation branching program computes a function f
if there exists a fixed permutation π 6= id such that for every x such that
f(x) = 1 the program outputs π and for every x such that f(x) = 0 the
program outputs id3.

It is easy to see that the above two definitions of PBP are equivalent.

Definition 4. (Skew Circuits) An AND gate is called skew if all but one
of its children are input variables. A Boolean circuit in which all the AND
gates are skew is called a skew circuit.

We assume that the skew circuits are layered. The width of the circuit
is the maximum number of gates in any layer. The layer may have AND,
OR or input gates. Each type of gate contributes towards the width. We
assume that the fan-in of the AND gates is bounded by 2 and there are no
NOT gates (negations appear only for the input variables)4. We denote the
class of languages decided by width-w skew circuits by SKw. The following
lemma summarizes some well known connections between BPw, PBPw, SKw.

Lemma 5. Let w ∈ N. Then

1. For any w, PBPw ⊆ BPw.

2. For any w ≥ 5, BPw ⊆ PBPw [7].

3. For any w, BPw is contained in SKw2
(see for example [27]).

Proof Sketch. The first part follows from the definitions of PBPw and BPw.
The celebrated result of Barrington shows the converse for w ≥ 5. The proof
of 3 involves converting a layered DAG G into a circuit CG such that on any
input x there is a directed path from s to t in G if and only if CG evaluates
to 1 on x. This is done by converting every node of G into an OR gate and
every edge of G into an AND gate. Let e = (u, v) be an edge in G which
connects vertex u to vertex v and has label xe. Let ORu and ORv be the
OR gates in CG corresponding to u, v and let ANDe be the AND gate in
CG corresponding to e. In CG, output of ANDe feeds into ORv and ANDe

receives ORu and xe as its inputs. It is easy to see that this construction

3This is often called the strong acceptance condition. Other notions of acceptance have
been studied in the literature. See for example [28]

4This assumption is not without loss of generality. However, we will see that when
a branching program is converted into a skew circuits, exactly this type of skew circuits
arise.

8

ensures that on any input x there is a directed path from s to t in G if and
only if CG evaluated to 1 on x. Moreover, the circuit CG thus constructed
is a skew circuit. In a layered graph G if there are at most w nodes per
layer, then there are at most w2 edges between any two consecutive layers.
Therefore, in CG any layer can have at most w2 gates.

Definition 6. (Approximate Majority) Approximate Majority ApproxMaja,n :
{0, 1}n → {0, 1} is the promise problem defined as:

ApproxMaja,n(x) :=

{
0, if x has Hamming weight at most a

1, if x has Hamming weight at least n− a

3. Branching Programs and Skew Circuits

The Branching Program model lends itself to an easy skew circuit char-
acterization and vice-versa. We sketch this correspondence in this section
and improve upon the known conversion from skew circuits to branching
programs.

3.1. Branching Programs to Skew Circuits

First we discuss the following folklore conversion of branching programs
to skew circuits:

Lemma 7. (Folklore) Let f : {0, 1}n → {0, 1} be a Boolean function com-
puted by a width-w length-` branching program with at most k edges between
any two consecutive layers and with the additional property that each layer
reads at most one variable or its negation. Then there is a skew circuit of
width max{w + 2, k} and size O((k + w)`) computing f .

Proof. Given a branching program B of width w, we convert it to a skew
circuit C as follows:

1. For every node g in B (except s), the circuit C has an OR gate ∨g. The
node corresponding to s in C is the gate that computes the constant
function 1. The output gate of C is the node corresponding to t in B.

2. Suppose there are incoming edges e1, e2, . . . , ek to the node g from gates
g1, g2, . . . , gk respectively. From our assumption they read the same in-
put variable or its negation. For these wires we create AND gates

9

∧1,∧2, . . . ,∧k which feed into ∨g and each AND gate ∧i receives two
inputs: gi and the variable (or its negation) labeling the edge ei, re-
spectively.

Every vertex in the BP gives rise to an OR gate in the skew circuit. And
every wire in the BP gives rise to an AND gate in the skew circuit. As every
wire in any layer reads the same variable or its negation, we need to add two
vertices corresponding to this variable and its negation on the layer below
the AND layer, i.e. in the OR layer just below it. Therefore, the width of
the OR layer is at most w + 2, whereas the width of the AND layer is at
most k. This immediately yields width and size bounds of max{w + 2, k}
and O((k + w)`) respectively. It is easy to see that for every x ∈ {0, 1}n,
f(x) = B(x) = C(x).

Figure 1 gives a width-2 branching program that computes the parity
function on n inputs. A width-4 skew circuit computing the same function
can be obtained by transforming the width-2 branching program via the
method given above (See Figure 5).

3.2. Permutation Branching Programs to skew circuits

A permutation θ is called a transposition if either it is the identity per-
mutation or there exists i 6= j such that θ(i) = j, θ(j) = i and for all
k 6= i 6= j, θ(k) = k. We call a transposition non-trivial if it is not the
identity permutation, trivial otherwise.

Definition 8. (Transposition Branching Programs, TBP) A width-w length-
` TBP is a program given by a set of ` instructions in which for any 1 ≤
i ≤ `, the ith instruction is a three tuple 〈ji, θi, σi〉, where ji is an index from
{1, 2, . . . , |X|}, θi, σi are transpositions of {1, 2, . . . , w}. The output of the
instruction is θi if xji = 1 and it is σi if xji = 0. The output of the program
on input x is the product of the output of each instruction of the program on
x.

Lemma 9. Given a width-w PBP of length ` there is an equivalent width-w
TBP of length O(w`).

Proof. It is known (see for example [29]) that any permutation of {1, 2, . . . , w}
can be written as a product of W transpositions of {1, 2, . . . , w}, where
W = O(w). Let P be a width-w PBP of length `. Consider the ith in-
struction in the program, say 〈ji, θi, σi〉. We know that we can write θi as a

10

product of W transpositions, i.e. θi = ti,1 · ti,2 . . . ti,W , where for 1 ≤ j ≤ W
ti,j is a transposition. Similarly, we have σi = si,1 · si,2 . . . si,W , where si,j is a
transposition for 1 ≤ j ≤ W .

To give a TBP equivalent to P , we replace every instruction 〈ji, θi, σi〉
in P by the following: 〈ji, ti,1, id〉 · 〈ji, ti,2, id〉 . . . 〈ji, ti,W , id〉 ·〈ji, id, si,1〉 ·
〈ji, id, si,2〉 . . . 〈ji, id, si,W 〉. By a simple inductive argument we can prove
that the the transposition branching program thus obtained is equivalent to
P . As W = O(w), the upper bound on the length of the resulting branching
program follows.

We defined TBPs as a set of instructions. Like in the case of PBPs, the
definition of TBPs can be rephrased in terms of the underlying DAG. We
observe the following about the DAG resulting from TBPs.

A width-w TBP is a layered width w PBP in which the following condi-
tions hold:

• There are designated source vertices s1, s2, . . . , sw in the first layer, say
layer 1 (of in-degree 0) and sink vertices t1, t2, . . . , tw (of out-degree 0)
in the last layer, layer `.

• Each layer has exactly w vertices.

• In each layer 1 ≤ i < `, all the edges are labeled by a unique variable,
say xji .

• In each layer 1 ≤ i ≤ `, one of the following holds:

– either the edges corresponding to xji = 1 form a non-trivial trans-
position and the edges corresponding to xji = 0 form the identity
permutation

– or the edges corresponding to xji = 0 form a non-trivial transpo-
sition and the edges corresponding to xji = 1 form the identity
permutation

Remark 1. As a result of the above properties of the TBP the total number of
distinct edges between any two layers in a width-w TBP is at most w+2: there
are w edges corresponding to the identity permutation, 2 edges corresponding
to the transposition of two elements, and w − 2 edges corresponding to the
identity maps for all but the two transposed elements. The w − 2 last edges
overlap with the w edges corresponding to the identity permutation.

11

Lemma 10. PBPw ⊆ SKw+2

Proof. Given a PBPw for a language L of size s, by Lemma 9 we know that L
also has a width-w TBP. By Remark 1 the underlying DAG for the TBP has
at most w+ 2 edges between any two consecutive layers. Using Lemma 7 we
get a skew circuit of width w + 2 for L. Note that the size of such a circuit
is O(ws)

Using Barrington’s characterization of NC1 and Lemma 10 we get the
following: NC1 = BP5 = PBP5 ⊆ SK7

3.3. Skew Circuits to Branching Programs

In this section we start from a skew circuit of bounded width and con-
vert it into a branching program of bounded width. Formally, we prove the
following:

Theorem 11. If C is a skew circuit of width w and length ` then there is a
branching program P of width w and size O(w`) computing the same function
as C.

Proof. Recall that in a skew circuit C, AND gates have fan-in 2 and at least
one child is an input variable whereas OR gates have arbitrary fan-in and
arbitrary predecessors.

Given a skew circuit C of width w and length `0 we will construct a
branching program P of width w that will recognize the same language. Let
Gi1, . . . , Giw be the gates of C on layer i for i = 1, . . . , `0.

Let X = {`i1 , `i2 , . . . , `iL} (|X| = L) be the set of layers on which there
is at least one input gate. Without loss of generality we assume that in each
j ∈ [L] the gate G`ijw

is an input gate. (There may be other input gates as

well.)
We will construct a branching program of length s = L + 2 and width

w. The nodes in the branching program in layer `ij ∈ X will be called
Nj0, . . . , Nj(w−1). The node N00 is the initial node and the node N(s−1)(w−1)
will be the target node.

The nodes N11, . . . , N(s−1)(w−1) will by our construction compute the value
of the nodes in a layer in X. More formally, for every input x, the gate G`jc

in layer `j of the circuit (and layer j in X) evaluated to 1 iff the node Njc

can be reached from the initial node. Since the gate Giw in X is an input

12

gate we will not add corresponding gate in the branching program. We have
completely specified the vertex set of the branching program P .

We now describe the edge set of P . We add an edge from N(j−1)0 to Nj0

labeled by 1 for every 1 ≤ j ≤ s − 1. This ensures that all nodes Nj0 are
always reachable from the initial node.

Suppose that the layer `j and `j + 1 are both in X, i.e. `j+1 = `j + 1,
then the edges between the nodes in the layer `j and `j+1 in the branching
program are easy to state. A node Nj+1c is connected to Njd if there is an
edge between the corresponding gates G`j+1c and G`jd. Also the edge in the
branching program is labeled by 1 if the gate G`jd is an OR gate, and labeled
by the variable xi (or its negation ¬xi) if G`jd is an AND gate querying xi,
resp. ¬xi. If an OR gate in `j is connected to an input gate, we generate an
edge to Nj0 labeled by the literal queried by the input gate.

Now assume that the layer `j is in X and `j+1 is the next layer in X and
`j+1 > `j +1. Then in the skew circuit, no input gates occur strictly between
the layers `j and `j+1. This implies that there are no AND gates in the layers
`j + 2, . . . , `j+1. Hence the functions computed by the gates in layer `j+1 are
ORs of some gates in layer `j + 1. In layer gates in layer `j + 1 are ORs of
either ANDs of gates in layer `j + 1 and an input variable or ORs of directly
gates in layer `j + 1. Therefore, we add the following edges in the branching
program: a node N(j+1)c is connected to Njd if the OR function computed
by G`j+1c has G`jd as one of the inputs. This edge in the branching program
is labeled by 1 if this was a direct OR, it is labeled by the variable xi (or its
negation ¬xi) it it was an ‘or’ of an ‘and’ querying xi (resp. ¬xi).

It is easy to verify by induction on the layers that Njc is reachable from
the initial gate if the corresponding gate evaluates true. Finally we add an
edge from the node corresponding to the output gate to N(s−1)(w−1).

Putting together Lemma 10 and Theorem 11 we get the following corol-
lary:

Corollary 12. NC1 = BP5 = PBP5 = SK7

4. Width ≤ 7 skew circuits

In this section we study the structure of the languages in NC1 by investi-
gating properties of skew circuits of width 7 or less. By definition SKi ⊆ SKi+1

for 1 ≤ i ≤ 6.
We start by proving that width 2 skew circuits are not universal.

13

Lemma 13. A width 2 skew circuit of arbitrary size cannot compute Parity
of 2 bits.

Proof. Let f = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2). To show that f /∈ SK2, firstly
notice that fixing the values of both the variables is necessary and sufficient
to make f a constant function. Let C be a SK2 circuit of minimal length
computing f . The output gate of C cannot have a constant as its input:
suppose the output is an AND(OR) gate and receives 0 (resp. 1) as input
then the circuit computes a constant function. On the other hand, if the
output is an AND(OR) gate and receives 1 (resp. 0) as input then such an
output gate is redundant, contradicting the minimality of the circuit.

Now, the output cannot be an AND gate because being skew, it can be
fixed by fixing one of its inputs, which contradicts the fact that C computes
f . Therefore the output gate of C, say g0, is an OR gate. Let g1, g2 be its
two inputs. The following cases arise:

a) Both g1, g2 cannot be OR since we can collapse such a layer and still
compute the same function, contradicting minimality.

b) Both g1, g2 cannot be AND: suppose they are both AND gates, the
next layer must have at least one input variable, say xi. Let the other
gate on that layer be h1. If both query the variable, then by setting
that variable to 0, we will make the output zero, which will contradict
the assumption that C computes f . Suppose one of them, say g1, does
not query x1 then the output of the circuit is g0 = (h1 ∧ xi) ∨ h1 = h1.
This contradicts the minimality of the circuit.

c) Even one of g1, g2 cannot be a variable, else by setting that variable we
can fix the output of the circuit.

d) Due to cases (a), (b) and (c) we are only left with a case in where one
of the inputs to g0 is an AND and the other is OR (say g1 is AND and
g2 is OR). In the layer just below this layer, there will have to be an
input gate in a minimal circuit and this will have to be queried by both
g1, g2. This variable can now be fixed (to make g2 = 1 and therefore
g0 = 1) so that the output of the circuit is fixed.

Therefore, no width 2 skew circuit computes f . This proves that width
2 circuits are not universal.

Recall that a k-DNF of size s on n variables is an OR of s terms, where
each term is an AND of at most k literals from {x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn}.

14

Similarly, k-CNF of size s on n variables is an AND of s clauses, where each
clause is an OR of at most k literals from {x1, x2, . . . , xn,¬x1,¬x2, . . . ,¬xn}.

Lemma 14. Let f be a k-DNF of size s on n variables. Then f has a width-3
skew circuit of length O(sk).

Proof. A term is an AND of at most k literals. It is easy to see that any such
term can be computed by a skew circuit of width 2 and length O(k). Suppose
C1, C2, . . . , Cs are width-2 skew circuits of length `1, `2, . . . , `s, respectively
computing the s terms in the k-DNF of size s. We need to compute an
OR of these. This can be done using the one extra width: stagger circuits
C1, C2, . . . , Cs one after the other. This requires width 2 and length L :=
k ·

∑s
i=1 `i = O(sk). Now add one OR gate per layer alongside these Cis.

Let us call them g1, g2, . . . , gL. Feed output of gi to gi+1 for all 1 ≤ i ≤ L
and feed output of Ci to g`i+1. It is easy to see that gL+1 computes f . (See
Figure 3.)

∨

∧
y11 y12 . . . y1k

. . . ∧
ys1 ys2 . . . ysk

y11 y12 . . . y1k . . . ys1 . . . ysk

∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧

.

Figure 3: Width 3 skew circuits for DNFs

As any Boolean function on n variables has an n-DNF of size at most 2n,
we get the following corollary.

Corollary 15. Let f : {0, 1}n → {0, 1}. Then f can be computed by width-3
skew circuit of length O(n2n), i.e. width-3 skew circuits are universal.

Lemma 16. Let f be a k-CNF of size s on n variables. Then f has a width-3
skew circuit of length O(sk).

15

Proof. Note that in a CNF, the top AND gate gets clauses as inputs. That
is, the AND gate is not skew. However, it is still possible to get a skew
circuit for CNFs. We prove this by induction on the number of clauses,
i.e. s. The base case is s = 1. This is just an OR of literals, which is
computable by width-2 skew circuit of length O(k). Let fi(x1, . . . , xn) =
C1 ∧ . . . ∧ Ci be computable by width-3 skew circuit of length O(ik). Now
fi+1 = fi ∧ Ci+1 (where Ci+1 = xj1 ∨ xj2 . . . ∨ xjk) is computed as follows:
fi+1 = (. . . ((fi∧xj1)∨ (fi∧xj2) . . . (fi∧xjk)) . . .). Note that we need width 1
each for the fi, the AND gate and the input variable. (Even though we require
width 3 to compute fi, after the computation, it just requires width 1 to carry
around the value of the function to the next stage). (See Figure 4.)

∧

fi ∨
xj1 xj2 . . . xjk

∨

∧

fi xj1

∧

fi xj2

. . . ∧

fi xjk

fi ∈ SK3

fi fi fi

∨ ∨ ∨

∧ ∧ ∧xjkxj2xj1

.

Figure 4: Width 3 skew circuits for CNFs

Definition 17. (Approximate Majority) Approximate Majority ApproxMaja,n :
{0, 1}n → {0, 1} is the promise problem defined as:

ApproxMaja,n(x) :=

{
0, if x has Hamming weight at most a

1, if x has Hamming weight at least n− a

By a result of Viola [30], it is known that Approximate Majority is com-
putable by P-uniform depth-3 circuits of polynomial size with alternating
AND/OR layers with the output gate being an OR gate. This along with
Lemma 16 above yields:

Corollary 18. ApproxMaja,n has skew circuits of width 4 and polynomial
length.

16

Razborov[12] and Smolensky[13] show that Parity does not have constant
depth circuit of polynomial size. It also implies that Parity does not have
polynomial size CNFs or DNFs . However, we now show that Parity has
skew circuits of width 4 and polynomial size.

Lemma 19. Parity on n variables has a skew circuit of width 4 and length
O(n).

Proof. This is an easy observation which comes from the fact that Parity has
a branching program of width 2 and length O(n). This fact along with part
3 of Lemma 5 proves the result. (Figure 5 shows the width 4 skew circuit for
Parity.)

Block 1 Block 2 Block (n− 1). . .

x1

¬x1

x2

∨

∨

¬x2

∧

∧

∧

∧

x3

∨

∨

¬x3

∧

∧

∧

∧

∨

∨

. . .

. . .

. . .

. . .

∨

Figure 5: Width-4 skew circuit for Parity

5. Parity and SK3

In this section we prove that Parity does not have polynomial length
width-3 skew circuits. As Parity has width 4 skew circuits of linear length
(Lemma 19), this separates SK3 from SK4.

Theorem 20. SK3 (SK4.

17

In order to prove this we first show that any width three skew circuit
computing Parity can be converted into a normal form. We then show that
any polynomial sized circuit of that normal form cannot compute Parity.

Lemma 21. Let C be a Boolean width 3 skew circuit with size s(n) computing
Parityn. The circuit C can be converted into another circuit D such that
D computes Parity of at least n− 2 bits and has the following structure:

1. The top gate of D is an OR of at most 3s(n)2 disjoint skew circuits,
say C1, C2, . . . , Cm, where m ≤ 3s(n)2.

2. The sum of sizes of all Cis is at most O(s(n)3)

3. At most two of these circuits have width 3 and all the other have width
at most 2.

Lemma 22. Let D be a circuit satisfying properties 1,2,3 from Lemma 21
and computing Parityn. Then there exists a constant c such that the size of
D is at least 2n/nc.

Using Lemma 21 and Lemma 22 it is easy to see that the lower bound
for Parity follows.

5.1. Proof of Lemma 21

Let C be a width three circuit computing Parity of n bits of size s(n).
The top gate of C cannot be AND. This is because, by fixing the input wires
of the AND gate, we could fix the output of the circuit, however, Parity of
n bits cannot be fixed by fixing < n bits. Therefore, we can assume that the
top gate is an OR gate.

Proposition 23. Let C be any width three skew circuit computing Parity
of n bits. Let k be the highest layer in C consisting of only AND gates, say
g1k, g

2
k, g

3
k. We can convert this into another width 3 skew circuit D computing

Parity of at least n−2 bits such that no layer of D contains three AND gates.

Proof. Let k be the highest layer (closest to the output gate) with all three
AND gates, say g1k, g

2
k, g

3
k. Note that, due to skewness of the circuit, the layer

k + 1 cannot have any AND gates. If any one of the gates at layer k has
fan-in 1, then we can replace that gate by an OR gate. Therefore, we will
assume that each gate has fan-in 2. Let gates at layer below, i.e. k − 1,
be g1k−1, g

2
k−1, g

3
k−1. As we are dealing with skew circuits, at least one of

g1k−1, g
2
k−1, g

3
k−1 is an input gate. Suppose there is only one input gate, then

18

all gates at layer k must read this input bit. And therefore, the three gates
at layer k can be fixed by fixing this input bit. If there are two input gates,
then either both read the same literal (a variable and its negation) or they
read two distinct input bits. In the latter case, by fixing the two distinct
bits, all the three gates can be fixed. Finally, if the two variables being read
are x and ¬x then fixing x may not fix all three gates. For example, suppose
g1k−1 = x, g2k−1 = ¬x, g3k−1 = g, and g1k = (g AND x) and g2k = (g AND ¬x).
Then fixing x to any value will not fix both g1k and g2k. However, in this
case, note that gates at layer k feed into OR gates. Therefore, in this case,
such an AND layer is redundant. Therefore, any such layer consisting of only
AND gates can be completely removed from the circuit by fixing at most 2
bits.

Therefore, we will now assume that we have a circuit D which computes
parity of at least n− 2 bits in which no layer consists of only AND gates.

Let G = (V,E) denote the DAG underlying the circuit D. Let X ⊆ V
denote the subset of gates which have a path to the top gate via only OR
gates. Note that all the vertices in this set are themselves OR gates. We
refer to the set of vertices X as ORSET.

Let Xin ⊆ V \X denote the set of vertices which have an edge incident
from it to some vertex in X. Similarly, let Xout ⊆ V \ X denote the set of
vertices which have an edge incident to them from some vertex in X.

(a) Disconnect all edges incident to the set Xout from X. Let the new
dangling wires be labeled with the constant 0 input.

(b) If after step (a) any AND gates receives constant input 0 then delete
the gate and if any OR gate receives constant input 0 then delete this
input of the OR gate.

(c) In the graph obtained after steps (a) and (b), consider V \ X. This
disconnects the DAG G and gives rise to some connected components,
say X1, X2, . . . , X`. For each i ∈ [`] and edge (u, v) such that u ∈ Xi

and v ∈ X let Ci,u be the subgraph (DAG) of Xi with u as its sink.

Proposition 24. The step (a) above does not change the function computed
by the circuit.

Proof. Let u be a gate in X which feeds into some gate in Xout say v. Step
(a) above disconnects u from v and feeds value 0 to v. Suppose gu, the OR

19

gate corresponding to u evaluates to 1, then the circuit will evaluate to 1
irrespective of all other gates. On the other hand, if it evaluates to 0, then
that is the value that we have fed into v and therefore, the modification in
Step (a) does not change the output of the circuit in either case.

Note that V \ X is partitioned by Xis. Therefore, ` ≤ s(n). Also,
∪mi=1Xi ⊆ V \X. Therefore,

∑m
i=1 |Xi| ≤ s(n). The number of edges in G is

at most 3s(n). Therefore, the total number of edges between any Xi and X
is at most 3s(n). Therefore, the number of circuits Cu,i is at most 3s(n)2 and
each such circuit is of size at most s(n). This proves parts 1, 2 of Lemma 21.

We will now prove part 3 of Lemma 21. The top gate of D is the same
as the top gate of C, and it is an OR gate. Therefore, this gate is in the
ORSET. Now as long as there are OR gates on the layers, we have at least
one gate per layer in the ORSET. Finally, if there is a layer with no OR
gates, then this layer must have at least one input variable (as D does not
have any layer with three AND gates). The other two gates at this layer be
g, h. Let Xg, Xh be two DAGs rooted at g and h, respectively, and Cg and Ch

be the two corresponding circuits. These are possibly width three circuits.
However, all other connected components of V \ X are of width at most 2
due to step (b) above. This gives Part 3 of Lemma 21.

5.2. Proof of Lemma 22

Let D be the circuit given by Lemma 21. Let n0 denote the number of
unfixed variables. Let C1, C2, . . . , Cm be circuits given by Lemma 21. We
know that at most two circuits among these have width 3. Let us assume
without loss of generality that the two circuits are C1, C2. The output gates
of these circuits are AND gates, say G1 and G2, respectively. These being
skew circuits, all but one of the inputs of the AND gates are input gates. We
will first prove the following proposition.

Proposition 25. By fixing at most two variables both G1 and G2 can be set
to zero.

Proof. Let G1, G2, . . . , Gm be top gates of the circuits C1, C2, . . . , Cm. Note
that Gis are AND gates because if they were OR gates they would have been
in the ORSET. Say they appear on layers k1, k2, . . . , km in the original width
3 circuit C. If both C1, C2 are width 3 circuits, then it is easy to see that
k1 ≤ ki for 3 ≤ i ≤ m and k2 ≤ ki for 3 ≤ i ≤ m. Let us assume without

20

loss of generality k1 ≤ k2, i.e the gate G1 appears on a lower layer (closer to
Layer 1) than G2.

Let xi, Y1, Y2 be the gates on the layer k1 − 1. As G1 is an AND gate, it
must query one variable. Let that be xi. Let the other input to G1 be Y1
without loss of generality.

Now note that Y2 must be connected to the ORSET via G2. If it is not
connected via G2 then it is easy to see that C2 cannot have width 3. (since
k2 > k1 and ORSET extends all the way upto k1 + 1, therefore, the circuit
C2, which starts at k2 and is disjoint from the ORSET and disjoint from the
path which connected Y2 to the ORSET, can have width at most 2.)

Our proof for the proposition is a case analysis of the various settings for
xi, Y1, and Y2.

(a) Suppose input gate of G2 reads a variable y 6= ¬xi, then set xi = 0, y =
0 which will eliminate both G1, G2 by setting at most two variables as
desired.

(b) Suppose y = ¬xi. Here, by minimality of the circuit we can assume

that the output of the entire circuit can be written as ∨O(m)
i=3 Ci ∨ (Y1 ∧

xi)∨ (Y2∧¬xi). To handle this we need to look at the next layer below
k1 − 1 that reads an input variable. Say the variable read is xj and
the layer number is k0. Let the other two gates on this layer be Z1, Z2.
Here again, by observing that there cannot be any redundant gates in
the minimal circuit (and using distributivity of AND/ORs) it is easy
to see that xj 6= xi. If either of Y1, Y2 is an AND gate, then k0 = k1− 1
else both are OR gates.

Therefore, Y1, Y2 are ORs over {(xj∧Z1), Z1, Z2}. (The analysis for the
case of ORs over {(xj∧Z2), Z1, Z2} is symmetric. The case of ORs over
simply {xj, Z1, Z2} cannot arise as otherwise Y1 or Y2 will be connected
to the ORSET directly, but this is not possible as we have that both
are connected to the ORSET via ANDs.)

(i) If both Y1 and Y2 do not query xj∧Z1, then the AND is redundant,
which is not possible in a minimal circuit.

(ii) If Y2 (Y1) queries only xj ∧ Z1. Then by setting xi = 0, xj = 0
(¬xi = 0, xj = 0, respectively) we can set both G1 and G2 to zero.

(iii) If Y2 queries (xj ∧ Z1) and Z1, but not Z2. Then again the AND
is redundant. (The case that Y1 queries (xj ∧Z1) and Z1, but not
Z2 is similar.)

21

(iv) If Y2 queries (xj∧Z1) and Z2, but not Z1 and Y1 queries Z2 (Y1 may
query Z1 and xj∧Z1 as well) thenG1∨G2 = (((xj ∧ Z1) ∨ Z2) ∧ xi)∨
(Z2∧xi) = ((xj ∧ Z1) ∧ xi)∨(Z2∧xi)∨(Z∧¬xi) = ((xj ∧ Z1) ∧ xi)∨
Z2, i.e. Z2 directly feeds into the ORSET, but this contradicts
minimality. (The case that Y1 queries (xj ∧ Z1) and Z2, but not
Z1 and Y2 queries Z2 is similar).

(v) If Y2 queries (xj ∧ Z1) and Z2, but not Z1 and Y1 queries Z1 but
nothing else then Y1 is redundant.

This exhausts all the cases and finally by setting at most 2 variables
we have managed to eliminate both G1, G2. This finishes the proof of
the proposition.

Let N denote the number of variables which were not set. Here, N ≥
n0 − 2. The new circuit, say D′, is now an OR of C3, C4, . . . , Cm and by
our assumption, it computes Parity of N variables. We will show that OR
of polynomially many polynomial size width-2 skew circuits cannot compute
Parity.

Let us fix some notation. Let L⊕ denote the 1 set of parity, i.e. L⊕ =
{x ∈ {0, 1}N | Parity(x) = 1}. We know that |L⊕| = 2N−1. For any Boolean
circuit C, let LC denote {x ∈ {0, 1}N | C(x) = 1}. Note that as D′ above is
an OR of C3, C4 . . . , Cm, we have LD′ = ∪mi=3LCi

.

Definition 26. We say that a Boolean circuit C α-approximates a function
f : {0, 1}n → {0, 1} if the following conditions hold:

• ∀x ∈ {0, 1}n, if f(x) = 0 then C(x) = 0, i.e. C has no false positives.

• The ratio of |{x | C(x) = 1}| to |{x | f(x) = 1}| is at least α

For the sake of contradiction we have assumed that D′ computes parity
of N bits. Assuming this and from the fact that LD′ = ∪mi=3LCi

, we get that
there exists an i ∈ {3, 4, . . . ,m} such that Ci 1/m-approximates parity of
N bits. We will now prove that no such Ci exists, which will give us the
contradiction. Formally, we prove the following:

Claim 27. Let D′ and C3, C4, . . . , Cm be defined as above. There does not
exists i ∈ {3, 4, . . . ,m} such that Ci 1/m-approximates Parity of N bits.

22

Proof. Suppose there exists a Ci which 1/m-approximates parity of N bits.
Recall that Ci is a width 2 skew circuit. Let the last layer be L and the first
layer be 1. Let `i1 , `i2 , . . . , `it be the layers in which there is one input gate,
with `i1 being closest to layer 1 and `it being closest to layer L. (Note that, we
can assume without loss of generality that layer 1 is the only layer which has
two input gates.) Let the variables queried by these gates be xi1 , xi2 , . . . , xit ,
respectively. Let hit+1 denote the output gate in layer L. Similarly, let hi1 be
the gate in layer `i1 (other than the input gate), hi2 be the gate in layer `i2
(other than the input gate) and so on till hit be the gate in layer `it (other
than the input gate).

As there are no NOT gates in the circuit, hij+1
is a monotone function of

xij , hij for every 1 ≤ j ≤ t. There is a unique value of xij , say bij ∈ {0, 1},
such that by setting xij = bij , hij+1

becomes a non-trivial function of hij .
(This is because, there are at most 6 different monotone functions on two
bits, two of which cannot occur in a minimal circuit. And the other four
(AND, OR, NAND, NOR) have this property.)

Note that, the setting of xit = bit will not fix the value of hit . Suppose
hit gets fixed due to this setting. In that case, value of hit+1 will also get
fixed. Suppose the value of hit+1 becomes 1, then for all settings of x 6= xit ,
hit+1 will continue to have value 1. But we have assumed that Ci has no false
positives. Therefore, this is not possible. On the other hand, if the value
of hit+1 gets fixed to 0, then for all settings of variables x 6= xit the circuit
will output 0. That is, for 2N−1 different inputs the circuit will output 0.
However, we have assumed that the circuit outputs 1 for at least 2N−1/m
many inputs.

Assuming xit = bit and xit 6= xit−1 , we will repeat this argument for xit−1 .
Let xit−1 = bit−1 be the setting of xit−1 which makes hit a function of hit−1 .
Suppose this setting of xit−1 fixes hit then that will in turn fix hit+1 . As
before, to avoid false positives, the value of hit+1 cannot be fixed to 1. And
to ensure that the circuit evaluated to 1 on at least 2N−1/m inputs, it cannot
be fixed to 0.

In this way, we can repeat the argument for k distinct variables as long
as k < (N − 1) − dlogme. Let k0 be such that k0 = ω(logm) and k0 <
(N − 1)− dlogme. We fix k0 distinct variables as above. But now note that
any other setting of these k0 variables fixes the value of hit+1 to 0. Therefore,
the circuit can be 1 on at most O(2N−k0) inputs. But this contradicts our
assumption that hit+1 evaluated to 1 on at least 2N/m inputs from L⊕.

23

6. Discussion

The above study provides a wide range of interesting questions, answers
to which may improve our understanding of functions in NC1. Namely, the
questions regarding lower bounds for width k skew circuits for 4 ≤ k ≤ 6.
Some of these questions could be more tractable than the daunting question
of proving lower bounds for NC1 circuits. Plenty of gaps remain in our
understanding of bounded width branching programs and skew circuits:

• At what width are skew circuits capable of computing the Majority
function? It is clear from Barrington’s work and Lemma 10 that width
7 suffices. Can we do better?

• Can we prove an exponential lower bound for width-3 or width-4 skew
circuits computing the Majority function? Note that even though Par-
ity reduces to Majority and we have shown that Parity requires ex-
ponential size width 3 skew circuits, we do not know of a reduction
between Parity to Majority that can be implemented by width 3 skew
circuits. Towards this end, the first step might be to obtain a normal
form for any width 3 circuit computing Majority, like the one we have
for Parity in Lemma 21.

• Can we show the hierarchy between width 4 to width 7 skew circuits is
strict under a plausible Complexity-theoretic assumption (say for e.g.
NC1 * TC0 * ACC0)?

References

[1] A. Borodin, On relating time and space to size and depth, SIAM journal
on computing 6 (4) (1977) 733–744.

[2] P. W. Beame, S. A. Cook, H. J. Hoover, Log depth circuits for division
and related problems, SIAM Journal on Computing 15 (1986) 994–1003.

[3] W. Hesse, E. Allender, D. Barrington, Uniform constant-depth threshold
circuits for division and iterated multiplication, Journal of Computer
and System Sciences 65 (2002) 695–716.

[4] R. J. Lipton, Y. Zalcstein, Word problems solvable in logspace, Journal
of the ACM (JACM) 24 (3) (1977) 522–526.

24

[5] P. M. Spira, On time-hardware complexity tradeoffs for boolean func-
tions, in: Proceedings of the 4th Hawaii Symposium on System Sciences,
1971, pp. 525–527.

[6] S. R. Buss, The boolean formula value problem is in alogtime, in: Pro-
ceedings of the nineteenth annual ACM symposium on Theory of com-
puting, ACM, 1987, pp. 123–131.

[7] D. Barrington, Bounded-width polynomial-size branching programs can
recognize exactly those languages in NC1, J. Comput. Syst. Sci. 38
(1989) 150–164.

[8] D. A. M. Barrington, D. Thérien, Finite monoids and the fine structure
of nc1, J. ACM 35 (4) (1988) 941–952. doi:10.1145/48014.63138.
URL http://doi.acm.org/10.1145/48014.63138

[9] J. Hastad, Almost optimal lower bounds for small depth circuits, in:
Proceedings of the eighteenth annual ACM symposium on Theory of
computing, ACM, 1986, pp. 6–20.

[10] M. Furst, J. B. Saxe, M. Sipser, Parity, circuits, and the polynomial-time
hierarchy, Mathematical Systems Theory 17 (1) (1984) 13–27.

[11] A. C.-C. Yao, Separating the polynomial-time hierarchy by oracles, in:
— 26th Annual Symposium on Foundations of Computer Science, IEEE,
1985, pp. 1–10.

[12] A. A. Razborov, Lower bounds on the size of bounded depth circuits
over a complete basis with logical addition, Mathematical Notes 41 (4)
(1987) 333–338.

[13] R. Smolensky, Algebraic methods in the theory of lower bounds for
boolean circuit complexity, in: Proceedings of the nineteenth annual
ACM symposium on Theory of computing, ACM, 1987, pp. 77–82.

[14] R. Beigel, The polynomial method in circuit complexity., in: Structure
in Complexity Theory Conference, 1993, pp. 82–95.

[15] R. Williams, Nonuniform acc circuit lower bounds, Journal of the ACM
(JACM) 61 (1) (2014) 2.

25

http://doi.acm.org/10.1145/48014.63138
http://doi.acm.org/10.1145/48014.63138
http://dx.doi.org/10.1145/48014.63138
http://doi.acm.org/10.1145/48014.63138

[16] C.-Y. Lee, Representation of switching circuits by binary-decision pro-
grams, Bell System Technical Journal 38 (4) (1959) 985–999.

[17] W. J. Masek, A fast algorithm for the string editing problem and decision
graph complexity, Ph.D. thesis, Massachusetts Institute of Technology
(1976).

[18] A. Borodin, D. Dolev, F. E. Fich, W. Paul, Bounds for width two branch-
ing programs, SIAM Journal on Computing 15 (2) (1986) 549–560.

[19] A. A. Razborov, Lower bounds for deterministic and nondeterminis-
tic branching programs, in: Fundamentals of Computation Theory,
Springer, 1991, pp. 47–60.

[20] S. Jukna, Boolean function complexity: advances and frontiers, Vol. 27,
Springer Science & Business Media, 2012.

[21] D. A. Barrington, Width-3 permutation branching programs, technical
Memo MIT/LCS/TM-293, Massachusetts Institute of Technology, Lab-
oratory for Computer Science (1985).

[22] H. Venkateswaran, Circuit definitions of nondeterministic complexity
classes, SIAM Journal on Computing 21 (4) (1992) 655–670.

[23] S. Toda, Classes of arithmetic circuits capturing the complexity of com-
puting the determinant, IEICE Transactions on Information and Sys-
tems E75-D (1992) 116–124.

[24] G. Malod, N. Portier, Characterizing valiant’s algebraic complexity
classes, Journal of complexity 24 (1) (2008) 16–38.

[25] E. Allender, J. Jiao, M. Mahajan, V. Vinay, Non-commutative arith-
metic circuits: depth reduction and size lower bounds, Theoretical Com-
puter Science 209 (1) (1998) 47–86.

[26] N. Limaye, G. Malod, S. Srinivasan, Lower bounds for non-commutative
skew circuits, Electronic Colloquium on Computational Complexity,
Report 2015/022, http://www.eccc.hpi-web.de/report/2015/022/

(2015).

[27] B. Raghavendra Rao, A study of width bounded arithmetic circuits and
the complexity of matroid isomorphism, [HBNI TH 17].

26

http://www.eccc.hpi-web.de/report/2015/022/

[28] A. Brodsky, An impossibility gap between width-4 and width-5 permu-
tation branching programs, Information Processing Letters 94 (4) (2005)
159–164. doi:10.1016/j.ipl.2005.01.012.
URL http://dx.doi.org/10.1016/j.ipl.2005.01.012

[29] I. N. Herstein, Topics in algebra, John Wiley & Sons, 2006.

[30] E. Viola, On approximate majority and probabilistic time, Computa-
tional Complexity 18 (3) (2009) 337–375.

27

http://dx.doi.org/10.1016/j.ipl.2005.01.012
http://dx.doi.org/10.1016/j.ipl.2005.01.012
http://dx.doi.org/10.1016/j.ipl.2005.01.012
http://dx.doi.org/10.1016/j.ipl.2005.01.012

	Introduction
	Circuit Lower Bounds
	Branching Program Lower Bounds
	Skew Circuits
	Our Results
	Organization of the paper

	Preliminaries
	Branching Programs and Skew Circuits
	Branching Programs to Skew Circuits
	Permutation Branching Programs to skew circuits
	Skew Circuits to Branching Programs

	Width skew circuits
	Parity and
	Proof of Lemma 21
	Proof of Lemma 22

	Discussion

