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Abstract

We study the classical simulatability of commuting quantum circuits with n input qubits
and O(log n) output qubits, where a quantum circuit is classically simulatable if its output
probability distribution can be sampled up to an exponentially small additive error in classical
polynomial time. First, we show that there exists a commuting quantum circuit that is not
classically simulatable unless the polynomial hierarchy collapses to the third level. This is the
first formal evidence that a commuting quantum circuit is not classically simulatable even when
the number of output qubits is exponentially small. Then, we consider a generalized version of
the circuit and clarify the condition under which it is classically simulatable. Lastly, we apply the
argument for the above evidence to Clifford circuits in a similar setting and provide evidence
that such a circuit augmented by a depth-1 non-Clifford layer is not classically simulatable.
These results reveal subtle differences between quantum and classical computation.

1 Introduction and Summary of Results

One of the most important challenges in quantum information processing is to understand the
difference between quantum and classical computation. An approach to meeting this challenge is
to study the classical simulatability of quantum computation. Previous studies have shown that
restricted models of quantum computation, such as commuting quantum circuits, are useful for
this purpose [20, 5, 17, 16, 2, 3, 12, 8, 19, 11]. Because of the simplicity of such restricted models,
they are also useful for identifying the source of the computational power of quantum computers.
It is therefore of great interest to study their classical simulatability.

In this paper, we study the classical simulatability of commuting quantum circuits with n input
qubits and O(poly(n)) ancillary qubits initialized to |0〉, where a commuting quantum circuit is a
quantum circuit consisting of pairwise commuting gates, each of which acts on a constant number of
qubits. When all commuting gates in a commuting quantum circuit act on at most c qubits for some
constant c ≥ 2, the circuit is said to be c-local. For considering the classical simulatability, we adopt
strong and weak simulations. The strong simulation of a quantum circuit is to compute its output
probability up to an exponentially small additive error in classical polynomial time and the weak
one is to sample its output probability distribution similarly. Any strongly simulatable quantum
circuit is weakly simulatable. Our main focus is on the hardness of classically simulating quantum
circuits and thus we mainly deal with the weak simulatability, which yields a stronger result than
that the strong simulatability yields. Previous hardness results on the weak simulatability are
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usually obtained with respect to multiplicative error [20, 3, 8], but such an error seems to be too
strong an assumption as discussed in [2]. Our results are obtained with respect to additive error.

In 2011, Bremner et al. showed that there exists a 2-local IQP circuit with O(poly(n)) output
qubits such that it is not weakly simulatable (under a plausible assumption) [3], where an IQP
circuit is a quantum circuit consisting of pairwise commuting gates that are diagonal in the X-
basis {(|0〉±|1〉)/

√
2}. Roughly speaking, this result means that when the number of output qubits

is large, even a simple commuting quantum circuit is powerful. On the other hand, in 2013, Ni
et al. showed that any 2-local commuting quantum circuit with O(log n) output qubits is strongly
simulatable and that there exists a 3-local commuting quantum circuit with only one output qubit
such that it is not strongly simulatable (under a plausible assumption) [12]. Thus, when the number
of output qubits is O(log n), the classical simulatability of commuting quantum circuits depends on
the number of qubits affected by each commuting gate. A natural question is whether there exists
a commuting quantum circuit with O(log n) output qubits such that it is not weakly simulatable.

There are two previous results related to this question. The first one is that any (constant-local)
IQP circuit with O(log n) output qubits is weakly simulatable [3]. Thus, if we want to answer the
above question affirmatively, we need to consider commuting quantum circuits other than IQP
circuits. The second one is that, if any commuting quantum circuit with only one output qubit is
weakly simulatable, there exists a polynomial-time classical algorithm for the problem of estimating
the matrix element |〈0|U |0〉| (up to a polynomially small additive error) for any unitary matrix U
that is implemented by a constant-depth quantum circuit [12]. This suggests an affirmative answer
to the above question since the matrix element estimation problem seems to be hard for a classical
computer. However, the hardness has not been formally understood yet.

We provide the first formal evidence for answering the above question affirmatively:

Theorem 1. There exists a 5-local commuting quantum circuit with O(log n) output qubits such
that it is not weakly simulatable unless the polynomial hierarchy PH collapses to the third level.

It is widely believed that PH does not collapse to any level [15]. Thus, the circuit in Theorem 1 is the
desired evidence. To construct the circuit, we first show the existence of a depth-3 quantum circuit
An that is not weakly simulatable with respect to additive error (under a plausible assumption),
where it has n input qubits, O(poly(n)) ancillary qubits, and O(poly(n)) output qubits. This is
shown by our new analysis of the weak simulatability (with respect to additive error) of a depth-
3 quantum circuit that is not weakly simulatable with respect to multiplicative error (under a
plausible assumption) [3, 5]. Our idea for constructing the circuit in Theorem 1 is to combine An
with the OR reduction circuit [7], which reduces the computation of the OR function on k bits to
that on O(log k) bits. The resulting circuit has O(log n) output qubits and is not weakly simulatable
(under a plausible assumption). It is of course not a commuting quantum circuit, but an important
observation is that the OR reduction circuit can be transformed into a 2-local commuting quantum
circuit. We consider a quantum circuit consisting gates of the form A†ngAn for any commuting gate
g in the commuting OR reduction circuit and analyze it rigorously, which implies Theorem 1.

Then, in order to generalize the above-mentioned result that any IQP circuit with O(log n)
output qubits is weakly simulatable [3], we consider the weak simulatability of a generalized version
of the circuit in Theorem 1. We assume that we are given two quantum circuits: Fn is a quantum
circuit with n input qubits, O(poly(n)) ancillary qubits, and O(poly(n)) output qubits and D is
a quantum circuit on O(poly(n)) qubits consisting of pairwise commuting gates that are diagonal

in the Z-basis {|0〉, |1〉}. The generalized version is the circuit (F †n ⊗ H⊗l)D(Fn ⊗ H⊗l), where
l = O(log n). The input qubits and output qubits of the circuit are the input qubits of Fn and the
ancillary qubits on which H⊗l is applied, respectively. In particular, when Fn = An and D is a
quantum circuit consisting of controlled phase-shift gates, the whole circuit becomes the circuit in
Theorem 1. We show that the weak simulatability of Fn implies that of the whole circuit:
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Theorem 2. If Fn is weakly simulatable, then (F †n ⊗H⊗l)D(Fn ⊗H⊗l) with l = O(log n) output
qubits is also weakly simulatable.

The above-mentioned result in [3] corresponds to the case when Fn is a tensor product of H.
Theorem 2 implies an interesting suggestion on how to improve Theorem 1. As described above,
the 5-local commuting quantum circuit in Theorem 1 is constructed by choosing a depth-3 quantum
circuit as Fn. A possible way to improve Theorem 1, or more concretely, a possible way to construct
a 3- or 4-local commuting quantum circuit that is not weakly simulatable would be to somehow
choose a depth-2 quantum circuit as Fn. Theorem 2 implies that such a construction is impossible.
This is because, since any depth-2 quantum circuit is weakly simulatable [20, 10], choosing a depth-2
quantum circuit as Fn yields only a weakly simulatable quantum circuit.

We show Theorem 2 by simply generalizing the proof of the above-mentioned result in [3]. More
precisely, we fix the states of the qubits other than the O(log n) output qubits on the basis of the
assumption in Theorem 2 and then follow the change of the states of the output qubits. This yields
a polynomial-time classical algorithm for weakly simulating (F †n ⊗H⊗l)D(Fn ⊗H⊗l).

Lastly, we apply the argument for proving Theorem 1 to Clifford circuits with n input qubits,
O(poly(n)) ancillary qubits in a product state, and O(log n) output qubits. A simple extension
of the proof in [4, 8] implies that any Clifford circuit in the setting is strongly simulatable. We
provide evidence that a slightly extended circuit is not weakly simulatable:

Theorem 3. There exists a Clifford circuit augmented by a depth-1 non-Clifford layer with
O(poly(n)) ancillary qubits in a particular product state and with O(log n) output qubits such that
it is not weakly simulatable unless PH collapses to the third level.

Similar to Theorems 1 and 2, Theorem 3 contributes to understanding a subtle difference between
quantum and classical computation. As in the proof of Theorem 1, using the result in [8], we
show the existence of a Clifford circuit that is not weakly simulatable with respect to additive
error (under a plausible assumption), where it has n input qubits, O(poly(n)) ancillary qubits in
a particular product state, and O(poly(n)) output qubits. Then, we combine the Clifford circuit
with a constant-depth OR reduction circuit with unbounded fan-out gates [7]. The resulting circuit
has O(log n) output qubits and is not weakly simulatable (under a plausible assumption). By
decomposing the unbounded fan-out gates into CNOT gates, we transform the combination of the
Clifford circuit and OR reduction circuit into a Clifford circuit augmented by a depth-1 non-Clifford
layer, which implies Theorem 3. A similar argument with a constant-depth quantum circuit for
the OR function with unbounded fan-out gates [18] implies that the number of output qubits can
further be decreased to one at the cost of adding one more depth-1 non-Clifford layer.

2 Preliminaries

2.1 Quantum Circuits

We use the standard notation for quantum states and the standard diagrams for quantum cir-
cuits [13]. The elementary gates in this paper are a Hadamard gate H, a phase-shift gate R(θ)
with angle θ = ±2π/2k for any k ∈ N, and a controlled-Z gate ΛZ, where

H =
1√
2

(
1 1
1 −1

)
, R(θ) =

(
1 0
0 eiθ

)
, ΛZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

We denote R(π), R(π/2), and HR(π)H as Z, P , and X, respectively, where Z and X (with
Y = iXZ and identity I) are called Pauli gates. We also denote HΛZH as ΛX, which is a CNOT
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gate, where H acts on the target qubit. A quantum circuit consists of the elementary gates. In
particular, when a quantum circuit consists only of H, P , and ΛZ, it is called a Clifford circuit.
A commuting quantum circuit is a quantum circuit consisting of pairwise commuting gates, where
we do not require that each commuting gate be one of the elementary gates. In other words, when
we think of a quantum circuit as a commuting quantum circuit, we are allowed to regard a group
of elementary gates in the circuit as a single gate and we require that such gates, which are not
necessarily elementary gates, be pairwise commuting.

The complexity measures of a quantum circuit are its size and depth. The size is the number
of elementary gates in the circuit. To define the depth, we consider the circuit as a set of layers
1, . . . , d consisting of one-qubit and two-qubit gates, where gates in the same layer act on pairwise
disjoint sets of qubits and any gate in layer j is applied before any gate in layer j + 1. The depth
of the circuit is the smallest possible value of d [5]. It seems to be natural to require that each gate
in a layer be one of the elementary gates, but we do not require this for simplicity and we consider
one-qubit and two-qubit gates determined from the context. In other words, when we count the
depth, we are allowed to consider one-qubit and two-qubit gates generated by elementary gates in
the circuit. Regardless of whether we adopt the requirement or not, the depth of the circuit we are
interested in is a constant. A quantum circuit can use ancillary qubits initialized to |0〉. We do not
require that the states of the ancillary qubits be reset to |0〉 at the end of the computation.

We deal with a uniform family of polynomial-size quantum circuits {Cn}n≥1, where each Cn
is a quantum circuit with n input qubits and O(poly(n)) ancillary qubits, and can use phase-shift
gates with angles θ = ±2π/2k for any k = O(poly(n)). Some of the input and ancillary qubits
are called output qubits. At the end of the computation, Z-measurements, i.e., measurements
in the Z-basis, are performed on the output qubits. The uniformity means that there exists a
polynomial-time deterministic classical algorithm for computing the function 1n 7→ Cn, where Cn
is the classical description of Cn. A symbol denoting a quantum circuit, such as Cn, also denotes
its matrix representation in some fixed basis. Any quantum circuit in this paper is understood to
be an element of a uniform family of polynomial-size quantum circuits and thus, for simplicity, we
deal with a quantum circuit Cn in place of a family {Cn}n≥1. We require that each commuting
gate in a commuting quantum circuit act on a constant number of qubits. When all commuting
gates act on at most c qubits for some constant c ≥ 2, the circuit is said to be c-local [12].

2.2 Classical Simulatability and Complexity Classes

We deal with a uniform family of polynomial-size classical circuits to model a polynomial-time de-
terministic classical algorithm. Similarly, to model its probabilistic version, we deal with a uniform
family of polynomial-size randomized classical circuits, each of which has a register initialized with
random bits for each run of the computation [3]. As in the case of quantum circuits, for simplicity,
we consider a classical circuit in place of a family of classical circuits.

Let Cn be a polynomial-size quantum circuit with n input qubits, O(poly(n)) ancillary qubits,
and m output qubits. For any x ∈ {0, 1}n, there exists an output probability distribution
{(y,Pr[Cn(x) = y])}y∈{0,1}m , where Pr[Cn(x) = y] is the probability of obtaining y ∈ {0, 1}m by
Z-measurements on the output qubits of Cn with the input state |x〉. The classical simulatability
of Cn is defined as follows [20, 21, 3, 22, 12, 8, 19]:

Definition 1. • Cn is strongly simulatable if the output probability Pr[Cn(x) = y] and its
marginal output probability can be computed up to an exponentially small additive error in
classical O(poly(n)) time. More precisely, for any polynomial p, there exists a polynomial-size
classical circuit Dn such that, for any x ∈ {0, 1}n and y ∈ {0, 1}m,

|Dn(x, y)− Pr[Cn(x) = y]| ≤ 1

2p(n)
,
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and, when we choose arbitrary m′ output qubits from the m output qubits of Cn for any
m′ < m, the output probability Pr[Cn(x) = y′] can be computed similarly for any x ∈ {0, 1}n
and y′ ∈ {0, 1}m′

.

• Cn is weakly simulatable if the output probability distribution {(y,Pr[Cn(x) = y])}y∈{0,1}m can
be sampled up to an exponentially small additive error in classical O(poly(n)) time. More
precisely, for any polynomial p, there exists a polynomial-size randomized classical circuit Rn
such that, for any x ∈ {0, 1}n and y ∈ {0, 1}m,

|Pr[Rn(x) = y]− Pr[Cn(x) = y]| ≤ 1

2p(n)
.

Any strongly simulatable quantum circuit is weakly simulatable [20, 3].
The following two complexity classes are important for our discussion [1, 3, 6]:

Definition 2. Let L ⊆ {0, 1}∗.

• L ∈ PostBQP if there exists a polynomial-size quantum circuit Cn with n input qubits,
O(poly(n)) ancillary qubits, one output qubit, and one particular qubit (other than the output
qubit) called the postselection qubit such that, for any x ∈ {0, 1}n,

– Pr[postn(x) = 0] > 0,

– if x ∈ L, Pr[Cn(x) = 1|postn(x) = 0] ≥ 2/3,

– if x /∈ L, Pr[Cn(x) = 1|postn(x) = 0] ≤ 1/3,

where the event “postn(x) = 0” means that the classical outcome of the Z-measurement on
the postselection qubit is 0.

• L ∈ PostBPP if there exists a polynomial-size randomized classical circuit Rn with n input
bits that, for any x ∈ {0, 1}n, outputs Rn(x),postn(x) ∈ {0, 1} such that

– Pr[postn(x) = 0] > 0,

– if x ∈ L, Pr[Rn(x) = 1|postn(x) = 0] ≥ 2/3,

– if x /∈ L, Pr[Rn(x) = 1|postn(x) = 0] ≤ 1/3.

We use the notation postn(x) = 0 both in the quantum and classical settings, but the meaning will
be clear from the context. Another important class is the polynomial hierarchy PH =

⋃
j≥1 ∆p

j .

Here, ∆p
1 = P and ∆p

j+1 = PN∆p
j for any j ≥ 1, where P is the class of languages decided by

polynomial-time classical algorithms and N∆p
j is the non-deterministic class associated to ∆p

j [15, 3].
It is widely believed that PH 6= ∆p

j for any j ≥ 1 [15]. As shown in [3], if PostBQP ⊆ PostBPP, then
PH = ∆p

3, i.e., PH collapses to the third level. It can be shown that, in our setting of elementary
gates and quantum circuits, this relationship also holds when the condition Pr[postn(x) = 0] > 0
in the definition of PostBQP is replaced with the condition that, for some polynomial q (depending
only on Cn), Pr[postn(x) = 0] ≥ 1/2q(n). In the following, we adopt the latter condition.

3 Commuting Quantum Circuits

3.1 Hardness of the Weak Simulation

It is known that there exists a depth-3 quantum circuit with n input qubits, O(poly(n)) ancillary
qubits, and O(poly(n)) output qubits such that it is not weakly simulatable with respect to mul-
tiplicative error unless PH collapses to the third level [3]. We first analyze its weak simulatability
with respect to additive error and show the following lemma:
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Lemma 1. There exists a depth-3 polynomial-size quantum circuit with O(poly(n)) output qubits
such that it is not weakly simulatable (with respect to additive error) unless PH collapses to the
third level.

Proof. We assume that PH does not collapse to the third level. Then, as described above,
PostBQP * PostBPP. Let L ∈ PostBQP \ PostBPP. Then, there exists a polynomial-size quan-
tum circuit Cn with n input qubits, a = O(poly(n)) ancillary qubits, one output qubit, and one
postselection qubit (and some polynomial q) such that, for any x ∈ {0, 1}n,

• Pr[postn(x) = 0] ≥ 1/2q(n),

• if x ∈ L, Pr[Cn(x) = 1|postn(x) = 0] ≥ 2/3,

• if x /∈ L, Pr[Cn(x) = 1|postn(x) = 0] ≤ 1/3.

As shown in [5], there exists a depth-3 polynomial-size quantum circuit An with n input qubits,
a+ b ancillary qubits, and one output qubit such that, for any x ∈ {0, 1}n,

• if x ∈ L, Pr[An(x) = 1|qpostn(x) = 0b+1] ≥ 2/3,

• if x /∈ L, Pr[An(x) = 1|qpostn(x) = 0b+1] ≤ 1/3,

where b = O(poly(n)), the event “qpostn(x) = 0b+1” means that all classical outcomes of Z-
measurements on the qubit corresponding to the postselection qubit of Cn and particular b qubits
(other than the output qubit) are 0. We call these b+1 qubits the postselection qubits of An. Since
the probability of obtaining 0b by Z-measurements on the b qubits is 1/2b [5], it holds that

Pr[qpostn(x) = 0b+1] =
1

2b
· Pr[postn(x) = 0] ≥ 1

2b+q
.

We regard An, which has only one output qubit, as a new circuit with b+2 output qubits, where one
of the output qubits is the original output qubit qout of An and the others are the b+1 postselection
qubits of An. We also denote this circuit as An. Thus, An is a depth-3 polynomial-size quantum
circuit with O(poly(n)) output qubits. For any x ∈ {0, 1}n,

• Pr[An(x) = 0b+11] = Pr[An(x) = 1&qpostn(x) = 0b+1],

• Pr[An(x) = 0b+10] = Pr[An(x) = 0&qpostn(x) = 0b+1],

where, for simplicity, we assume that the last output qubit of An is qout. Thus, for any x ∈ {0, 1}n,

• if x ∈ L, Pr[An(x) = 0b+11] ≥ 2 · Pr[qpostn(x) = 0b+1]/3,

• if x /∈ L, Pr[An(x) = 0b+11] ≤ Pr[qpostn(x) = 0b+1]/3.

We can show that, if An is weakly simulatable, then L ∈ PostBPP. This contradicts the assumption
that L /∈ PostBPP and completes the proof. The details can be found in Appendix A.1.

The proof method of Lemma 1 can be considered as an elaborated version of the one in [19].
As pointed out by Nishimura and Morimae [14], we note that their proof method in [11] based on
the complexity class SBQP [9] can also be used to show the lemma.

The OR reduction circuit reduces the computation of the OR function on b bits to that on
O(log b) bits [7]: for any b-qubit input state |x1〉 · · · |xb〉 with xj ∈ {0, 1}, the circuit outputs |0〉⊗m
if xj = 0 for every j and an m-qubit state orthogonal to |0〉⊗m if xj = 1 for some j, where
m = dlog(b + 1)e. Besides the b input qubits, the circuit has m ancillary qubits as output qubits.
The first part of the circuit is a layer consisting of H gates on the ancillary qubits. The middle
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 𝐻𝐻  𝐻𝐻  𝐻𝐻  𝐻𝐻  𝐻𝐻  𝐻𝐻 
 𝐻𝐻  2  𝐻𝐻  𝐻𝐻  2  𝐻𝐻  𝐻𝐻  2  𝐻𝐻 

Input 
qubits 

Output 
qubits 

𝑔𝑔1 𝑔𝑔2 𝑔𝑔3 𝑔𝑔4 𝑔𝑔5 𝑔𝑔6 

|0⟩ 
|0⟩ 

 𝐻𝐻  𝐻𝐻 
 2  𝐻𝐻  2  𝐻𝐻  2 

Input 
qubits 

Output 
qubits 

|0⟩ 
|0⟩ 

(a) 

(b) 

Figure 1: (a) The non-commuting OR reduction circuit, where b = 3, the gate represented by two
black circles connected by a vertical line is a ΛZ gate, i.e., a controlled-R(2π/21) gate, and the gate
represented by “2” is an R(2π/22) gate. (b) The commuting OR reduction circuit, where b = 3.

part is a quantum circuit consisting of b controlled-R(2π/2k) gates over all 1 ≤ k ≤ m, where each
gate uses an input qubit as the control qubit and an ancillary qubit as the target qubit. Such a
gate is not an elementary gate, but it can be decomposed into a sequence of elementary gates. The
last part is the same as the first one. We call the circuit the non-commuting OR reduction circuit.
It is depicted in Fig. 1(a), where b = 3.

An important observation is that the non-commuting OR reduction circuit can be transformed
into a 2-local commuting quantum circuit. This is shown by considering a quantum circuit con-
sisting of gates gj on two qubits, where each gj is a controlled-R(2π/2k) gate, which is in the
non-commuting OR reduction circuit, sandwiched between Hadamard gates on the target qubit.
Since HH = I and controlled-R(2π/2k) gates are pairwise commuting gates on two qubits, the
operation performed by the circuit is the same as that performed by the non-commuting OR re-
duction circuit and the gates gj are pairwise commuting gates on two qubits. We call the circuit
the commuting OR reduction circuit. It is depicted in Fig. 1(b), where b = 3. Combining this
commuting OR reduction circuit with An in the above proof implies the following lemma:

Lemma 2. There exists a commuting quantum circuit with O(log n) output qubits such that it is
not weakly simulatable unless PH collapses to the third level.

Proof. As in the proof of Lemma 1, we can take L ∈ PostBQP \ PostBPP and obtain a depth-3
polynomial-size quantum circuit An with n input qubits, a + b ancillary qubits, and b + 2 output
qubits such that, for any x ∈ {0, 1}n,

• if x ∈ L, Pr[An(x) = 0b+11] ≥ 2 · Pr[qpostn(x) = 0b+1]/3,

• if x /∈ L, Pr[An(x) = 0b+11] ≤ Pr[qpostn(x) = 0b+1]/3.

We construct a quantum circuit En with n input qubits, a+ b+m+ 1 ancillary qubits, and m+ 1
output qubits as follows, where m = dlog(b+2)e. As an example, En is depicted in Fig. 2(a), where
n = 5, a = 0, and b = 2 (and thus m = 2).

1. Apply An on n input qubits and a+b ancillary qubits, where the input qubits of En are those
of An.
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(a) (b) 

 𝐴𝐴5 𝐴𝐴5
† 𝐴𝐴5  𝐴𝐴5

†  𝐴𝐴5 𝐴𝐴5
†  𝐴𝐴5 𝐴𝐴5

†

Input 
qubits 

⋯ 

Output 
qubits 

|0⟩ 
|0⟩ 
|0⟩ 
|0⟩ 
|0⟩ 

𝑔𝑔1 𝑔𝑔2 𝑔𝑔3
𝑔𝑔4 𝑔𝑔5 𝑔𝑔6

⋯ 𝑔𝑔1 

𝑔𝑔6 

Figure 2: (a) Circuit En, where n = 5, a = 0, and b = 2 (and thus m = 2). The gate represented
by a black circle and ⊕ connected by a vertical line is a ΛX gate. The gates gj are the ones in
Fig. 1. (b) The commuting quantum circuit based on En in (a).

2. Apply a ΛX gate on the last output qubit of An and on an ancillary qubit (other than the
ancillary qubits in Step 1), where the output qubit is the control qubit.

3. Apply the commuting OR reduction circuit on the other output qubits of An, i.e., the b+ 1
postselection qubits of An, and m ancillary qubits (other than the ancillary qubits in Steps 1
and 2), where the postselection qubits are the input qubits of the OR reduction circuit.

4. Apply A†n as in Step 1.

The m+1 ancillary qubits used in Steps 2 and 3 are the output qubits of En. Step 4 does not affect
the output probability distribution of En, but it allows us to construct the commuting quantum
circuit described below. By the construction of En, for any x ∈ {0, 1}n,

Pr[An(x) = 0b+11] = Pr[En(x) = 0m1], Pr[An(x) = 0b+10] = Pr[En(x) = 0m0].

This implies that En is not weakly simulatable. The proof is the same as that of Lemma 1 except
that the number of output qubits we need to consider is only m+ 1 = O(log n).

We show that there exists a commuting quantum circuit with m+ 1 output qubits such that its
output probability distribution is the same as that of En. We consider a quantum circuit consisting
of gates A†ngAn for any gate g that is either a ΛX gate in Step 2 of En or gj in the commuting OR
reduction circuit. The input qubits and output qubits of En are naturally considered as the input
qubits and output qubits of the new circuit, respectively. The circuit based on En in Fig. 2(a) is

depicted in Fig. 2(b). Since these gates g in En are pairwise commuting, so are the gates A†ngAn.

Moreover, A†ngAn acts on a constant number of qubits (in fact, on at most 23 + 1 = 9 qubits) since
the depth of An is three, g is on two qubits, and the number of qubits on which both g and An are
applied is one. By the construction of the circuit, its output probability distribution is the same
as that of En.

To complete the proof of Theorem 1, it suffices to show that the commuting quantum circuit in
the proof of Lemma 2 is 5-local. To show this, we give the details of the depth-3 quantum circuit
constructed by the method in [5]. The circuit is based on a one-qubit teleportation circuit. We
adopt the teleportation circuit depicted in Fig. 3(a), which is obtained from the standard one by
decomposing it into the elementary gates. If the classical outcomes of Z-measurements on the two
qubits other than the output qubit are 0, the output state is the same as the input state. We call
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Figure 3: (a) The teleportation circuit. (b) An example of circuit Cn, where n = 2 and a = 0. The
gate represented by k ∈ N is an R(2π/2k) gate. (c) Depth-3 circuit An constructed from Cn in (b)
by the method in [5], where b = 6 and thus the total number of postselection qubits is seven.

the first measured qubit, which is the input qubit, “the first teleportation qubit”, and the second
one “the second teleportation qubit”.

For example, we consider the circuit depicted in Fig. 3(b) as Cn in the proof of Lemma 1, where
n = 2 and a = 0. The depth-3 circuit An constructed from Cn by the method in [5] is depicted in
Fig. 3(c), where b = 6 and thus the total number of postselection qubits is seven. The first layer
consists of the first halves of the teleportation circuits and the third consists of the last halves. The
second layer consists of the gates in Cn. The teleportation qubits are the postselection qubits. If all
classical outcomes of Z-measurements on the teleportation qubits are 0, all teleportation circuits
teleport their input states successfully and thus the output state is the same as that of Cn.

We will analyze A†ngAn in the proof of Lemma 2, which implies the following lemma:

Lemma 3. For any gate A†ngAn in the proof of Lemma 2, there exists a quantum circuit on at
most five qubits that implements the gate.

Proof. We first consider the case when g = gj in the commuting OR reduction circuit. We divide
this case into the following three cases, where we assume that g is applied on a postselection qubit
q1 and an output qubit q2 of En:

• Case 1: q1 is the first teleportation qubit (of a teleportation circuit).

• Case 2: q1 is the second teleportation qubit (of a teleportation circuit).

• Case 3: q1 is the postselection qubit corresponding to the one of Cn.

We obtain the desired circuit on at most five qubits by simplifying A†ngAn, where we represent An
as L3L2L1, each of which is a layer of An. We consider Case 1 using an example of A†ngAn depicted
in Fig. 4(a), where An is the circuit in Fig. 3(c), g is a controlled-R(2π/2k) gate sandwiched between
H gates, and q1 is the fourth qubit of An from the top, which is the first teleportation qubit. By
simplifying L†3gL3, we obtain the circuit depicted in Fig 4(b). We can further simplify the circuit
and obtain the desired circuit on five qubits q1, . . . , q5 depicted in Fig. 4(c). In general, we can

similarly simplify A†ngAn and a similar analysis works for Cases 2 and 3 and the case when g = ΛX.
The details can be found in Appendix A.2.

9



(b) (c) 

(a) 

 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 

 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 

 𝐻𝐻 

 𝐻𝐻 
 𝐻𝐻 

 4 

 𝐻𝐻 
 𝐻𝐻  3 

 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 

 𝐻𝐻 

 4† 

 3† 

 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 

𝐿𝐿1 𝐿𝐿2 𝐿𝐿3 𝐿𝐿3
† 𝐿𝐿2

† 𝐿𝐿1
† 

 𝐻𝐻  𝑘𝑘  𝐻𝐻 

𝑞𝑞1 

𝑞𝑞2 

𝑞𝑞3 

𝑞𝑞4 

𝑞𝑞5 

𝑔𝑔 

 𝐻𝐻  𝑘𝑘  𝐻𝐻 

 𝐻𝐻 
 𝐻𝐻  𝐻𝐻 

 𝐻𝐻 
 𝐻𝐻 

 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 

𝑞𝑞1 

𝑞𝑞2 

𝑞𝑞3 

𝑞𝑞4 

𝑞𝑞5 

 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 

 𝐻𝐻 

 𝐻𝐻 
 𝐻𝐻 

 4 

 3 

 𝐻𝐻 

 4† 

 3† 

 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 
 𝐻𝐻 

𝐿𝐿1 𝐿𝐿2 𝐿𝐿3
†𝑔𝑔𝐿𝐿3 𝐿𝐿2

† 𝐿𝐿1
† 

 𝐻𝐻  𝑘𝑘  𝐻𝐻 

 𝐻𝐻  𝐻𝐻 𝑞𝑞1 

𝑞𝑞2 

𝑞𝑞3 

𝑞𝑞4 

𝑞𝑞5 

Figure 4: (a) Gate A†ngAn, where An is the circuit in Fig. 3(c), g is a controlled-R(2π/2k) gate
sandwiched between H gates, and q1 is the fourth qubit of An from the top. (b) The circuit obtained

from A†ngAn in (a) by simplifying L†3gL3. (c) The circuit on five qubits obtained from (b).

3.2 Weak Simulatability of a Generalized Version

The non-commuting OR reduction circuit with b+1 input qubits can be represented asH⊗mD′H⊗m,
where m = dlog(b+ 2)e and D′ is a quantum circuit consisting only of controlled-R(2π/2k) gates.

Since ΛX isHΛZH, we can represent the circuit in Theorem 1 as (A†n⊗H⊗(m+1))D′′(An⊗H⊗(m+1)),
where D′′ consists of D′ and ΛZ, and An is a depth-3 quantum circuit with n input qubits, a + b
ancillary qubits, and b+ 2 output qubits. The output qubits of the whole circuit are the ancillary
qubits on which H⊗(m+1) is applied.

We generalize the circuit in Theorem 1. We assume that we are given two quantum circuits: Fn
is a quantum circuit with n input qubits, s = O(poly(n)) ancillary qubits, and t (≤ n+ s) output
qubits and D is a quantum circuit on t+ l qubits consisting of pairwise commuting gates that are
diagonal in the Z-basis and act on a constant number of qubits, where l = O(log n). We consider

the following quantum circuit, which can be represented as (F †n ⊗H⊗l)D(Fn ⊗H⊗l), with n input
qubits, s+ l ancillary qubits, and l output qubits:

1. Apply Fn on n input qubits and s ancillary qubits, where the input qubits of the whole circuit
are those of Fn.

2. Apply H⊗l on l ancillary qubits (other than the ancillary qubits in Step 1).

10



3. Apply D on t+ l qubits, which are the output qubits of Fn and the ancillary qubits in Step 2.

4. Apply H⊗l as in Step 2 and then apply F †n as in Step 1.

The output qubits are the ancillary qubits on which H⊗l is applied. The circuit in Theorem 1
corresponds to the case when Fn = An, D = D′′, s = a+ b, t = b+ 2, and l = m+ 1.

When Fn = H⊗(n+s) with arbitrary s and t, (F †n ⊗H⊗l)D(Fn⊗H⊗l) is weakly simulatable [3].
A simple generalization of the proof in [3] implies Theorem 2. In fact, we fix the state of the
qubits other than the O(log n) output qubits on the basis of the assumption in Theorem 2 and
then follow the change of the states of the output qubits. The details of the proof can be found in
Appendix A.3. As described in Section 1, Theorem 2 implies an interesting suggestion on how to
improve Theorem 1. Concretely speaking, a possible way to construct a 3- or 4-local commuting
quantum circuit that is not weakly simulatable would be to somehow choose a depth-2 quantum
circuit as Fn, but such a construction is impossible.

4 Clifford Circuits

As an application of the construction method for the circuit in Theorem 1, we consider Clifford
circuits with n input qubits, O(poly(n)) ancillary qubits, and O(log n) output qubits. In this
section, the ancillary qubits are allowed to be in a general product state (not restricted to a
tensor product of |0〉). As shown in [4, 8], such a Clifford circuit with only one output qubit is
strongly simulatable. We first show that a simple extension of the proof in [4, 8] implies the strong
simulatability of a Clifford circuit with O(log n) output qubits:

Lemma 4. Any Clifford circuit with O(poly(n)) ancillary qubits in a general product state and
with O(log n) output qubits is strongly simulatable.

The proof can be found in Appendix A.4.
In contrast to Lemma 4, it is known that there exists a Clifford circuit with n input qubits,

O(poly(n)) ancillary qubits in a particular product state, and O(poly(n)) output qubits such that
it is not weakly simulatable with respect to multiplicative error unless PH collapses to the third
level [8]. This is shown by using the fact that any PostBQP circuit can be simulated (in some sense)
by a Clifford circuit. More precisely, let L ∈ PostBQP and Cn be a polynomial-size quantum circuit
with n input qubits, a = O(poly(n)) ancillary qubits initialized to |0〉, one output qubit, and one
postselection qubit (and some polynomial q) such that, for any x ∈ {0, 1}n,

• Pr[postn(x) = 0] ≥ 1/2q(n),

• if x ∈ L, Pr[Cn(x) = 1|postn(x) = 0] ≥ 2/3,

• if x /∈ L, Pr[Cn(x) = 1|postn(x) = 0] ≤ 1/3.

Then, there exists a Clifford circuit An with n input qubits, a ancillary qubits initialized to |0〉,
b = O(poly(n)) ancillary qubits in a product state |ϕ〉⊗b, and one output qubit, where |ϕ〉 =
R(π/4)H|0〉 = (|0〉+ eiπ/4|1〉)/

√
2, such that, for any x ∈ {0, 1}n,

• if x ∈ L, Pr[An(x) = 1|qpostn(x) = 0b+1] ≥ 2/3,

• if x /∈ L, Pr[An(x) = 1|qpostn(x) = 0b+1] ≤ 1/3,

where the event “qpostn(x) = 0b+1” means that all classical outcomes of Z-measurements on
the qubit corresponding to the postselection qubit of Cn and particular b qubits (other than
the output qubit) are 0. We call these b + 1 qubits the postselection qubits of An. We can
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show that Pr[qpostn(x) = 0b+1] ≥ 1/2b+q. By using this property and An obtained from
L ∈ PostBQP \ PostBPP as in the proof of Lemma 1, we can show the following lemma, where
the classical simulatability is defined with respect to additive error:

Lemma 5. There exists a Clifford circuit with O(poly(n)) ancillary qubits in a particular product
state and with O(poly(n)) output qubits such that it is not weakly simulatable unless PH collapses
to the third level.

As in the proof of Lemma 2, we construct a quantum circuit E′n with n input qubits and
a+ b+m+ 1 ancillary qubits by combining An with the non-commuting OR reduction circuit as
follows, where m = dlog(b+ 2)e and the m+ 1 ancillary qubits are the output qubits of E′n. As an
example, E′n is depicted in Fig. 5(a), where n = 5, a = 0, and b = 2.

1. Apply An on n input qubits, a ancillary qubits initialized to |0〉, and b ancillary qubits
initialized to |ϕ〉, where the input qubits of E′n are those of An.

2. Apply a ΛX gate on the (original) output qubit of An and an ancillary qubit (other than the
ancillary qubits in Step 1), where the output qubit is the control qubit.

3. Apply the non-commuting OR reduction circuit on the b+ 1 postselection qubits of An and
m ancillary qubits (other than the ancillary qubits in Steps 1 and 2), where the postselection
qubits are the input qubits of the OR reduction circuit.

A direct application of the proof of Lemma 2 implies the following lemma:

Lemma 6. There exists a Clifford circuit combined with the OR reduction circuit as described
above with O(poly(n)) ancillary qubits in a particular product state and with O(log n) output qubits
such that it is not weakly simulatable unless PH collapses to the third level.

We replace the non-commuting OR reduction circuit in Step 3 with a constant-depth OR reduc-
tion circuit with unbounded fan-out gates [7], where an unbounded fan-out gate can be considered
as a sequence of CNOT gates with the same control qubit. It is easy to show that decomposing
the unbounded fan-out gates into CNOT gates in the constant-depth OR reduction circuit yields
a Clifford-1 circuit, which is a Clifford circuit augmented by a depth-1 non-Clifford layer. In par-
ticular, this procedure transforms the middle part of the non-commuting OR reduction circuit in
Step 3, which is the only part that includes non-Clifford gates, into a quantum circuit that has
CNOT gates and a depth-1 layer consisting of all gates in the middle part. The circuit obtained
from the middle part in Fig. 5(a) is depicted in Fig. 5(b). This transformation with Lemma 6
implies Theorem 3.

A similar argument implies that there exists a Clifford-2 circuit with O(poly(n)) ancillary qubits
in a particular product state and with only one output qubit such that it is not weakly simulatable
unless PH collapses to the third level, where a Clifford-2 circuit has two depth-1 non-Clifford layers.
Let L ∈ PostBQP \ PostBPP. We obtain An as described above and combine it with a constant-
depth quantum circuit for the OR function with unbounded fan-out gates [18]. By decomposing
the unbounded fan-out gates into CNOT gates, the OR circuit can be transformed into a Clifford-2
circuit. Unfortunately, a combination of the circuits similar to the above construction has two
output qubits. Thus, we construct two circuits with one output qubit. One circuit consists of An
and the OR circuit, where the input qubits of the OR circuit are the output qubit of An and b+ 1
postselection qubits, and the output qubit of the OR circuit is the output qubit of the whole circuit.
The other similarly consists of XAn and the OR circuit, where X is applied on the output qubit
of An. By a similar argument in [19], we can show that, if these two Clifford-2 circuits are weakly
simulatable, then L ∈ PostBPP. Thus, at least one of the circuits is not weakly simulatable.
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Figure 5: (a) Circuit E′n, where n = 5, a = 0, and b = 2 (and thus m = 2). The dashed box
represents the middle part of the non-commuting OR reduction circuit. (b) The circuit that has
CNOT gates and a depth-1 layer consisting of all gates in the middle part in (a). The qubits in
state |0〉 are new ancillary qubits, which are not depicted in (a).

5 Open Problems

Interesting challenges would be to further investigate commuting quantum circuits and to consider
closely related computational models. Some examples are as follows:

• Does there exist a 3- or 4-local commuting quantum circuit with O(log n) output qubits such
that it is not weakly simulatable (under a plausible assumption)?

• Do the theorems in this paper hold when exponentially small error 1/2p(n) is replaced with
polynomially small error 1/p(n) in the definitions of the classical simulatability?

• Can we apply the results on commuting quantum circuits to investigating the computational
power of constant-depth quantum circuits?
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A Proofs

A.1 Proof of Lemma 1

We assume that An is weakly simulatable. Then, there exists a polynomial-size randomized classical
circuit Rn such that, for any x ∈ {0, 1}n and y ∈ {0, 1}b+2,

|Pr[Rn(x) = y]− Pr[An(x) = y]| ≤ 1

2b+q+10
.

This implies that

Pr[An(x) = 0b+11]− 1

2b+q+10
≤ Pr[Rn(x) = 0b+11] ≤ Pr[An(x) = 0b+11] +

1

2b+q+10
,

Pr[An(x) = 0b+10]− 1

2b+q+10
≤ Pr[Rn(x) = 0b+10] ≤ Pr[An(x) = 0b+10] +

1

2b+q+10
.

Since Pr[An(x) = 0b+11] + Pr[An(x) = 0b+10] = Pr[qpostn(x) = 0b+1], it holds that

Pr[qpostn(x) = 0b+1]− 1

2b+q+9
≤ Pr[Rn(x) = 0b+11] + Pr[Rn(x) = 0b+10]

≤ Pr[qpostn(x) = 0b+1] +
1

2b+q+9
.

We construct a polynomial-size randomized classical circuit Sn that implements the following
classical algorithm with input x ∈ {0, 1}n:

1. Compute Rn(x).

2. (a) If Rn(x) = 0b+11, set postn(x) = 0 and Sn(x) = 1.

(b) If Rn(x) = 0b+10, set postn(x) = 0 and Sn(x) = 0.

(c) Otherwise, set postn(x) = 1 and Sn(x) = 1.

By the definition of Sn,

Pr[postn(x) = 0] = Pr[Rn(x) = 0b+11] + Pr[Rn(x) = 0b+10]

≥ Pr[qpostn(x) = 0b+1]− 1

2b+q+9

≥ 1

2b+q
− 1

2b+q+9
> 0.

Moreover, for any x ∈ {0, 1}n,

Pr[Sn(x) = 1|postn(x) = 0] =
Pr[Rn(x) = 0b+11]

Pr[Rn(x) = 0b+11] + Pr[Rn(x) = 0b+10]
.

If x ∈ L,

Pr[Sn(x) = 1|postn(x) = 0] ≥
Pr[An(x) = 0b+11]− 1

2b+q+10

Pr[qpostn(x) = 0b+1] + 1
2b+q+9

≥
2
3 · Pr[qpostn(x) = 0b+1]− 1

2b+q+10

Pr[qpostn(x) = 0b+1] + 1
2b+q+9

=
2

3
− 7ε

3(1 + 2ε)
>

2

3
− 7

3
ε >

3

5
,
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where ε = 1/(2b+q+10 · Pr[qpostn(x) = 0b+1]) and it holds that

0 < ε ≤ 1

2b+q+10 · 1
2b+q

=
1

210
.

If x /∈ L,

Pr[Sn(x) = 1|postn(x) = 0] ≤
Pr[An(x) = 0b+11] + 1

2b+q+10

Pr[qpostn(x) = 0b+1]− 1
2b+q+9

≤
1
3 · Pr[qpostn(x) = 0b+1] + 1

2b+q+10

Pr[qpostn(x) = 0b+1]− 1
2b+q+9

=
1

3
+

5ε

3(1− 2ε)
<

2

5
.

The constants 2/3 and 1/3 in the definition of PostBPP can be replaced with 1/2 + δ and 1/2− δ,
respectively, for any constant 0 < δ < 1/2 [3]. Thus, L ∈ PostBPP.

A.2 Proof of Lemma 3

• Case 1: q1 is the first teleportation qubit (of a teleportation circuit).

We note that g is on the set of qubits {q1, q2} and that there is no gate on q2 in each layer.

All ΛZ gates other than the one on q1 and qubit q3 in layer 3 are cancelled out in L†3gL3.
Only the ΛZ gate, which is not cancelled out, increases the number of qubits involved with
{q1, q2} by one. Thus, L†3gL3 is on {q1, q2, q3}. By the construction of the teleportation
circuit, there is no gate on q3 in layer 2. Only one ΛZ gate on q1 and qubit q4 in layer 2
increases the number of qubits involved with {q1, q2, q3} by one. Thus, L†2L

†
3gL3L2 is on at

most four qubits. If a ΛZ gate is on q3 or q4 and on another qubit, it is cancelled out in
L†1L

†
2L
†
3gL3L2L1. Only one ΛZ gate on q1 and qubit q5 in layer 1 increases the number of

qubits involved with {q1, q2, q3, q4} by one. Thus, L†1L
†
2L
†
3gL3L2L1 is on at most five qubits.

• Case 2: q1 is the second teleportation qubit (of a teleportation circuit).

As an example, A†ngAn is depicted in Fig. 6(a), where An is the circuit in Fig. 3(c), g is a
controlled-R(2π/2k) gate sandwiched between H gates, and q1 is the second qubit of An from
the bottom, which is the second teleportation qubit. As in Case 1, there is no gate on q2

in each layer and L†3gL3 is on {q1, q2, q3}. The circuit obtained from A†ngAn in Fig. 6(a) by

simplifying L†3gL3 is depicted in Fig. 6(b). By the construction of the teleportation circuit,
there is no gate on q1 in layer 2. If a ΛZ gate is on q3 and a qubit in layer 2, it is cancelled
out in L†2L

†
3gL3L2. Thus, gates in layer 2 do not increase the number of qubits involved with

{q1, q2, q3}. In layer 1, a ΛZ gate on q1 and qubit q4 increases the number of qubits involved
with {q1, q2, q3} by one, and so does a ΛZ gate on q3 and qubit q5. In particular, the latter
happens only when an H gate is on q3 in layer 2. This is because, when any other gate, i.e., a
ΛZ or R(±2π/2k) gate, is on q3 in layer 2, the gate is cancelled out in L†2L

†
3gL3L2 and thus a

ΛZ gate on q3 and qubit q5 is also cancelled out in L†1L
†
2L
†
3gL3L2L1. Thus, L†1L

†
2L
†
3gL3L2L1 is

on at most five qubits. The circuit obtained from A†ngAn in Fig. 6(b) is depicted in Fig. 6(c).

• Case 3: q1 is the postselection qubit corresponding to the one of Cn.

Similar to the above cases, there is no gate on q2 in each layer. By the construction of An,
there is no gate on q1 in layer 3. Thus, it suffices to consider only L2L1. Since g is on two
qubits and the number of qubits on which both g and L2L1 are applied is one, L†1L

†
2gL2L1 is

on at most 22 + 1 = 5 qubits.
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Figure 6: (a) Gate A†ngAn, where An is the circuit in Fig. 3(c), g is a controlled-R(2π/2k) gate
sandwiched between H gates, and q1 is the second qubit of An from the bottom. (b) The circuit

obtained from A†ngAn in (a) by simplifying L†3gL3. (c) The circuit on five qubits obtained from
(b).

The analysis for Case 3 also works for the case when g = ΛX in Step 2 of En.

A.3 Proof of Theorem 2

Let |x〉 be an n-qubit input state, where x ∈ {0, 1}n. Moreover, let

Fn|x〉|0〉⊗s =
∑

z∈{0,1}t
αx,z|z〉|ψx,z〉,

where αx,z ∈ C and |ψx,z〉 is an (n+ s− t)-qubit state. Then,

(F †n ⊗H⊗l)D(Fn ⊗H⊗l)|x〉|0〉⊗(s+l) =
1√
2l

(F †n ⊗H⊗l)
∑

z∈{0,1}t,w∈{0,1}l
αx,zD|z〉|ψx,z〉|w〉.

Since D consists only of gates that are diagonal in the Z-basis, D|z〉|w〉 = eif(z,w)|z〉|w〉 for some
value f(z, w) computed from the diagonal elements of D. Thus, the above state is

1√
2l

(F †n ⊗H⊗l)
∑

z∈{0,1}t,w∈{0,1}l
αx,ze

if(z,w)|z〉|ψx,z〉|w〉.
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Thus, for any y ∈ {0, 1}l, the probability that (F †n ⊗H⊗l)D(Fn ⊗H⊗l) outputs y, which is repre-
sented as

Pr[(F †n ⊗H⊗l)D(Fn ⊗H⊗l)(x) = y],

is computed as

1

2l

∑
z,z′∈{0,1}t,w,w′∈{0,1}l

α†x,z′αx,ze
−if(z′,w′)+if(z,w)〈z′|z〉〈ψx,z′ |ψx,z〉〈w′|H⊗l|y〉〈y|H⊗l|w〉

=
∑

z∈{0,1}t
|αx,z|2 ·

1

2l

∑
w,w′∈{0,1}l

e−if(z,w′)+if(z,w)〈w′|H⊗l|y〉〈y|H⊗l|w〉.

Let p(n) be an arbitrary polynomial. By the assumption, there exists a polynomial-size randomized
classical circuit Rn such that, for any x ∈ {0, 1}n and z ∈ {0, 1}t,

|Pr[Rn(x) = z]− Pr[Fn(x) = z]| = |Pr[Rn(x) = z]− |αx,z|2| ≤
1

2p(n)+t
.

We consider a polynomial-size randomized classical circuit Tn that implements the following clas-
sical algorithm for generating the probability distribution

{(y,Pr[(F †n ⊗H⊗l)D(Fn ⊗H⊗l)(x) = y])}y∈{0,1}l ,
where the input is x ∈ {0, 1}n:

1. Compute z0 = Rn(x) ∈ {0, 1}t.

2. Compute the probability that Z-measurements on the state

1√
2l

∑
w∈{0,1}l

eif(z0,w)H⊗l|w〉

output y for any y ∈ {0, 1}l.

3. Output y ∈ {0, 1}l according to the probability distribution computed in Step 2.

The probability in Step 2 is represented as

1

2l

∑
w,w′∈{0,1}l

e−if(z0,w′)+if(z0,w)〈w′|H⊗l|y〉〈y|H⊗l|w〉.

We can compute f(z0, w) using a polynomial-size classical circuit since D has polynomially many
gates g and it is easy to classically compute γg ∈ C such that g|z0〉|w〉 = γg|z0〉|w〉 by using the
classical description of D, which includes information about the complex numbers defining g and
the qubit numbers on which g is applied. Moreover, since the state in Step 2 is only on l = O(log n)
qubits, we can compute the probability in Step 2 up to an exponentially small additive error using
a polynomial-size classical circuit. In the following, for simplicity, we assume that we can compute
the probability exactly. Then, for any y ∈ {0, 1}l,

Pr[Tn(x) = y] =
∑

z0∈{0,1}t
Pr[Rn(x) = z0] · 1

2l

∑
w,w′∈{0,1}l

e−if(z0,w′)+if(z0,w)〈w′|H⊗l|y〉〈y|H⊗l|w〉.

This implies that, for any x ∈ {0, 1}n and y ∈ {0, 1}l,

|Pr[Tn(x) = y]− Pr[(F †n ⊗H⊗l)D(Fn ⊗H⊗l)(x) = y]| ≤
∑

z0∈{0,1}t
|Pr[Rn(x) = z0]− |αx,z0 |2|

≤ 2t

2p(n)+t
=

1

2p(n)
.

A similar argument works when we compute the probability in Step 2 up to an exponentially small
additive error. Thus, (F †n ⊗H⊗l)D(Fn ⊗H⊗l) is weakly simulatable.
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A.4 Proof of Lemma 4

Let Cn = GN · · ·G1 be a Clifford circuit with n input qubits, a = O(poly(n)) ancillary qubits, and
l = O(log n) output qubits, where N = O(poly(n)) and Gj is H, P , or ΛZ. For any x = x1 · · ·xn ∈
{0, 1}n, let |ψx〉 = |x1〉 · · · |xn〉|ψ1〉 · · · |ψa〉 be an input state, where |ψj〉 is a one-qubit state. For
any y ∈ {0, 1}l,

Pr[Cn(x) = y] = 〈ψx|C†n|y〉〈y|Cn|ψx〉 = 〈ψx|C†nXy|0〉⊗l〈0|⊗lXyCn|ψx〉,

where Xy is the tensor product of X and I such that Xy|0〉⊗l = |y〉. As described in [12], it can be
shown by induction on l that

|0〉⊗l〈0|⊗l =
1

2l

∑
S⊆{1,...,l}

Z(S),

where Z(S) is the tensor product of Z and I such that Z is only on qubit j ∈ S. Thus,

Pr[Cn(x) = y] =
1

2l

∑
S⊆{1,...,l}

〈ψx|G†1 · · ·G
†
NXyZ(S)XyGN · · ·G1|ψx〉.

We can represent G†NXyZ(S)XyGN as a tensor product of Pauli gates with some coefficient ±1
since GN is a Clifford gate and XyZ(S)Xy is a tensor product of Pauli gates (in fact, Z and I gates
with some coefficient ±1). We repeat this transformation N times and obtain

Pr[Cn(x) = y] =
1

2l

∑
S⊆{1,...,l}

γS〈ψx|PS1 ⊗ · · · ⊗ PSn+a|ψx〉

=
1

2l

∑
S⊆{1,...,l}

γS〈x1|PS1 |x1〉 · · · 〈xn|PSn |xn〉〈ψ1|PSn+1|ψ1〉 · · · 〈ψa|PSn+a|ψa〉

for some coefficient γS and Pauli gates PSj . It is easy to construct a polynomial-time classical

algorithm for obtaining γS and PSj for any S ⊆ {1, . . . , l}. Moreover, since l = O(log n), it suffices
to consider only polynomially many S. Thus, the above representation immediately implies a
polynomial-time classical algorithm for computing Pr[Cn(x) = y]. The marginal output probability
can also be computed similarly and thus Cn is strongly simulatable.
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